Home
Class 11
MATHS
Solve sin 3x = - (1)/(sqrt2) , 0 lt x lt...

Solve `sin 3x = - (1)/(sqrt2) , 0 lt x lt 2pi.`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise EXERCISE 6|33 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos
  • TRIGONOMETRIC FUNCTION

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |44 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Chapter test |8 Videos

Similar Questions

Explore conceptually related problems

Solve for x , sin x = ( -sqrt3)/(2), (0 lt x lt 2pi).

If 0 lt x lt pi/2 then

Solve sin 3x = cos 2x. (0 lt x lt 2pi).

Solve: tan 3x = cot 5x , ( 0 lt x lt 2pi).

Solve 0 lt |x| lt 2

Solve : cos 3x + cos 2x = sin ""(3)/(2) x + sin "" (1)/(2) x, 0 lt x le pi.

If 0 lt x lt pi /2 then

If cos x + sin x = a , (- (pi)/(2) lt x lt - (pi)/(4)) , then cos 2 x is equal to

Find the maximum and minimum values of the function f(x) = (sin x)/(1+ tan x) ,(0 lt x lt 2pi) .

Solve: sin 5x - sin 3x - sin x =0, 0^(@) lt x lt 360^(@).