Home
Class 11
MATHS
Solve sin 3x = cos 2x. (0 lt x lt 2pi)....

Solve ` sin 3x = cos 2x. (0 lt x lt 2pi).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin 3x = \cos 2x \) for \( 0 < x < 2\pi \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \sin 3x = \cos 2x \] We can rewrite \( \cos 2x \) using the co-function identity: \[ \cos 2x = \sin\left(\frac{\pi}{2} - 2x\right) \] Thus, we have: \[ \sin 3x = \sin\left(\frac{\pi}{2} - 2x\right) \] ### Step 2: Set up the sine equation Since \( \sin A = \sin B \), we can set up two equations: 1. \( 3x = \frac{\pi}{2} - 2x + 2n\pi \) 2. \( 3x = \pi - \left(\frac{\pi}{2} - 2x\right) + 2n\pi \) where \( n \) is any integer. ### Step 3: Solve the first equation From the first equation: \[ 3x + 2x = \frac{\pi}{2} + 2n\pi \] \[ 5x = \frac{\pi}{2} + 2n\pi \] \[ x = \frac{\pi}{10} + \frac{2n\pi}{5} \] ### Step 4: Solve the second equation From the second equation: \[ 3x = \pi - \frac{\pi}{2} + 2x + 2n\pi \] \[ 3x - 2x = \frac{\pi}{2} + 2n\pi \] \[ x = \frac{\pi}{2} + 2n\pi \] ### Step 5: Find values of \( x \) in the interval \( 0 < x < 2\pi \) Now we need to find valid values of \( x \) for both equations. **For the first equation:** \[ x = \frac{\pi}{10} + \frac{2n\pi}{5} \] - For \( n = 0 \): \[ x = \frac{\pi}{10} \approx 0.314 \quad (\text{valid}) \] - For \( n = 1 \): \[ x = \frac{\pi}{10} + \frac{2\pi}{5} = \frac{\pi}{10} + \frac{4\pi}{10} = \frac{5\pi}{10} = \frac{\pi}{2} \quad (\text{valid}) \] - For \( n = 2 \): \[ x = \frac{\pi}{10} + \frac{4\pi}{5} = \frac{\pi}{10} + \frac{8\pi}{10} = \frac{9\pi}{10} \quad (\text{valid}) \] - For \( n = 3 \): \[ x = \frac{\pi}{10} + \frac{6\pi}{5} = \frac{\pi}{10} + \frac{12\pi}{10} = \frac{13\pi}{10} \quad (\text{valid}) \] - For \( n = 4 \): \[ x = \frac{\pi}{10} + \frac{8\pi}{5} = \frac{\pi}{10} + \frac{16\pi}{10} = \frac{17\pi}{10} \quad (\text{valid}) \] - For \( n = 5 \): \[ x = \frac{\pi}{10} + \frac{10\pi}{5} = \frac{\pi}{10} + 2\pi = \frac{21\pi}{10} \quad (\text{not valid}) \] **For the second equation:** \[ x = \frac{\pi}{2} + 2n\pi \] - For \( n = 0 \): \[ x = \frac{\pi}{2} \quad (\text{valid}) \] - For \( n = 1 \): \[ x = \frac{\pi}{2} + 2\pi = \frac{5\pi}{2} \quad (\text{not valid}) \] ### Step 6: Compile the solutions The valid solutions for \( x \) in the interval \( 0 < x < 2\pi \) are: \[ x = \frac{\pi}{10}, \frac{\pi}{2}, \frac{9\pi}{10}, \frac{13\pi}{10}, \frac{17\pi}{10} \] ### Final Answer: The solutions are: \[ x = \frac{\pi}{10}, \frac{\pi}{2}, \frac{9\pi}{10}, \frac{13\pi}{10}, \frac{17\pi}{10} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise EXERCISE 6|33 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos
  • TRIGONOMETRIC FUNCTION

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |44 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Chapter test |8 Videos

Similar Questions

Explore conceptually related problems

Solve: tan 3x = cot 5x , ( 0 lt x lt 2pi).

Solve sin 3x = - (1)/(sqrt2) , 0 lt x lt 2pi.

The angle between the curves y=sin x and y = cos x, 0 lt x lt (pi) /(2) , is

The angle between the curves y=sin x and y = cos x, 0 lt x lt (pi)/(2) , is

Solve 0 lt |x| lt 2

If 0 lt x lt pi/2 then

Solve for x , sin x = ( -sqrt3)/(2), (0 lt x lt 2pi).

If 0 lt x lt pi /2 then

Find the intervals in which function f(x) = sin x-cos x, 0 lt x lt 2pi is (i) increasing, (ii) decreasing.

Find the intervals in which function f(x) = sin x-cos x, 0 lt x lt 2pi is (i) increasing, (ii) decreasing.