Home
Class 11
MATHS
Find the values of theta between 0^(@) ...

Find the values of ` theta` between `0^(@) and 360^(@)` that satisfy the equation
`sin ( theta + 30^(@)) = 2 cos (45^(@) + theta )`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin(\theta + 30^\circ) = 2 \cos(45^\circ + \theta) \) for \( \theta \) in the interval \( [0^\circ, 360^\circ] \), we will follow these steps: ### Step 1: Expand both sides using trigonometric identities Using the sine and cosine addition formulas: - \( \sin(a + b) = \sin a \cos b + \cos a \sin b \) - \( \cos(a + b) = \cos a \cos b - \sin a \sin b \) We can rewrite the left side: \[ \sin(\theta + 30^\circ) = \sin \theta \cos 30^\circ + \cos \theta \sin 30^\circ \] Substituting the values \( \cos 30^\circ = \frac{\sqrt{3}}{2} \) and \( \sin 30^\circ = \frac{1}{2} \): \[ \sin(\theta + 30^\circ) = \sin \theta \cdot \frac{\sqrt{3}}{2} + \cos \theta \cdot \frac{1}{2} \] Now for the right side: \[ \cos(45^\circ + \theta) = \cos 45^\circ \cos \theta - \sin 45^\circ \sin \theta \] Substituting the values \( \cos 45^\circ = \frac{1}{\sqrt{2}} \) and \( \sin 45^\circ = \frac{1}{\sqrt{2}} \): \[ \cos(45^\circ + \theta) = \frac{1}{\sqrt{2}} \cos \theta - \frac{1}{\sqrt{2}} \sin \theta \] Thus, the equation becomes: \[ \frac{\sqrt{3}}{2} \sin \theta + \frac{1}{2} \cos \theta = 2 \left( \frac{1}{\sqrt{2}} \cos \theta - \frac{1}{\sqrt{2}} \sin \theta \right) \] ### Step 2: Simplify the equation Expanding the right side: \[ \frac{\sqrt{3}}{2} \sin \theta + \frac{1}{2} \cos \theta = \frac{2}{\sqrt{2}} \cos \theta - \frac{2}{\sqrt{2}} \sin \theta \] This simplifies to: \[ \frac{\sqrt{3}}{2} \sin \theta + \frac{1}{2} \cos \theta = \sqrt{2} \cos \theta - \sqrt{2} \sin \theta \] ### Step 3: Rearranging terms Rearranging gives: \[ \frac{\sqrt{3}}{2} \sin \theta + \sqrt{2} \sin \theta = \sqrt{2} \cos \theta - \frac{1}{2} \cos \theta \] Factoring out \( \sin \theta \) and \( \cos \theta \): \[ \left( \frac{\sqrt{3}}{2} + \sqrt{2} \right) \sin \theta = \left( \sqrt{2} - \frac{1}{2} \right) \cos \theta \] ### Step 4: Dividing both sides Dividing both sides by \( \cos \theta \) (assuming \( \cos \theta \neq 0 \)): \[ \tan \theta = \frac{\sqrt{2} - \frac{1}{2}}{\frac{\sqrt{3}}{2} + \sqrt{2}} \] ### Step 5: Solving for \( \theta \) Let \( k = \frac{\sqrt{2} - \frac{1}{2}}{\frac{\sqrt{3}}{2} + \sqrt{2}} \). Thus: \[ \theta = \tan^{-1}(k) \] ### Step 6: Finding all solutions in the interval Since the tangent function is positive in the first and third quadrants, we have: \[ \theta = \tan^{-1}(k) \quad \text{and} \quad \theta = 180^\circ + \tan^{-1}(k) \] ### Final Step: Calculate the values Now, calculate \( k \) and find \( \theta \) values in the range \( [0^\circ, 360^\circ] \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise EXERCISE 6|33 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos
  • TRIGONOMETRIC FUNCTION

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |44 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Chapter test |8 Videos

Similar Questions

Explore conceptually related problems

Find the values of theta between 0^(@) and 360^(@) which satisfy the equations sin^(2)theta=(3)/(4)

Find the values of theta between 0^(@) and 360^(@) which satisfy the equations cos2theta=(1)/(2) .

Find the values of theta between 0^(@) and 360^(@) which satisfy the equation 3 cos 2 theta - sin theta = 2.

Find the values of theta lying between 0^(@) and 360^(@) when sin theta=1/2

Find the values of theta lying between 0^(@) and 360^(@) when sec theta=-2

Find the values of theta lying between 0^(@) and 360^(@) when tan theta=-1

Find the values of theta lying between 0^(@) and 360^(@) when sin theta=sin 21^(@)

Find the values of theta lying between 0^(@) and 360^(@) when tan theta=-2.0145

Find the values of theta lying between 0^(@) and 360^(@) when sin theta=cos317^(@)

The number of values of theta between -pi and (3pi)/(2) that satisfies the equation 5cos 2 theta+2 "cos"^(2)(theta)/(2)+1=0 is :