Home
Class 11
MATHS
Solve cos x - sqrt3 sin x =1, 0^(@) le ...

Solve ` cos x - sqrt3 sin x =1, 0^(@) le x le 360 ^(@).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos x - \sqrt{3} \sin x = 1 \) for \( 0^\circ \leq x \leq 360^\circ \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \cos x - \sqrt{3} \sin x = 1 \] ### Step 2: Divide by 2 To simplify the equation, we can divide both sides by 2: \[ \frac{1}{2} \cos x - \frac{\sqrt{3}}{2} \sin x = \frac{1}{2} \] ### Step 3: Recognize trigonometric identities We can express \( \frac{1}{2} \) and \( \frac{\sqrt{3}}{2} \) in terms of sine and cosine: \[ \frac{1}{2} = \sin \frac{\pi}{6} \quad \text{and} \quad \frac{\sqrt{3}}{2} = \cos \frac{\pi}{6} \] Thus, we can rewrite the equation as: \[ \sin \frac{\pi}{6} \cos x - \cos \frac{\pi}{6} \sin x = \sin \frac{\pi}{6} \] ### Step 4: Use the sine subtraction formula Using the sine subtraction formula \( \sin(a - b) = \sin a \cos b - \cos a \sin b \), we can rewrite the left-hand side: \[ \sin\left(\frac{\pi}{6} - x\right) = \sin \frac{\pi}{6} \] ### Step 5: Set up the general solution The general solution for \( \sin A = \sin B \) is given by: \[ A = n\pi + (-1)^n B \] Applying this to our equation: \[ \frac{\pi}{6} - x = n\pi + (-1)^n \frac{\pi}{6} \] ### Step 6: Solve for \( x \) Now we can solve for \( x \): 1. For \( n = 0 \): \[ \frac{\pi}{6} - x = 0 + \frac{\pi}{6} \implies x = 0 \] 2. For \( n = 1 \): \[ \frac{\pi}{6} - x = \pi - \frac{\pi}{6} \implies \frac{\pi}{6} - x = \frac{5\pi}{6} \implies -x = \frac{5\pi}{6} - \frac{\pi}{6} \implies -x = \frac{4\pi}{6} \implies x = -\frac{4\pi}{6} = -\frac{2\pi}{3} \] Since \( -\frac{2\pi}{3} \) is not in the range \( 0^\circ \) to \( 360^\circ \), we convert it: \[ x = 360^\circ - \frac{2\pi}{3} \times \frac{180^\circ}{\pi} = 360^\circ - 120^\circ = 240^\circ \] ### Step 7: Final solutions Thus, the solutions to the equation \( \cos x - \sqrt{3} \sin x = 1 \) in the interval \( 0^\circ \leq x \leq 360^\circ \) are: \[ x = 0^\circ \quad \text{and} \quad x = 240^\circ \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise EXERCISE 6|33 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos
  • TRIGONOMETRIC FUNCTION

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |44 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Chapter test |8 Videos

Similar Questions

Explore conceptually related problems

Solve for x in W, 0^@ le x le 90^@ tan^2x=3(secx-1)

Solve 1 le |x-2| le 3

The number of real solution of the equation sqrt(1 + cos 2x) = sqrt2 sin^(-1) (sin x), -pi le x le pi , is

The number of real solution of the equation sqrt(1 + cos 2x) = sqrt2 sin^(-1) (sin x), -pi le x le pi , is

Find the number of solutions of cos x =|1+ sin x |, 0 le x le 3 pi

Solve : |x - 3| le 1

Solve 0 lt | x-3| le 5

Solve 2 cos^(2) x+ sin x le 2 , where pi//2 le x le 3pi//2 .

Solve the equation ( sin x + cos x )^(1+ sin 2x )=2 , when -pi le x le pi .

Find the set of values of x , which satisfy sin x * cos^(3) x gt cos x* sin^(3) x , 0 le x le 2pi .