Home
Class 11
MATHS
Find all the values of theta satisfyin...

Find all the values of ` theta ` satisfying the equation ` sin theta + sin 5 theta = sin 3 theta,` such that `0 le theta le pi.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin \theta + \sin 5\theta = \sin 3\theta \) for \( 0 \leq \theta \leq \pi \), we can follow these steps: ### Step 1: Use the sum-to-product identities We know that: \[ \sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] In our case, let \( A = 5\theta \) and \( B = \theta \). Thus, we can rewrite the left-hand side: \[ \sin \theta + \sin 5\theta = 2 \sin\left(\frac{5\theta + \theta}{2}\right) \cos\left(\frac{5\theta - \theta}{2}\right) = 2 \sin(3\theta) \cos(2\theta) \] ### Step 2: Set the equation Now, we can set the equation: \[ 2 \sin(3\theta) \cos(2\theta) = \sin(3\theta) \] ### Step 3: Factor the equation Rearranging gives: \[ 2 \sin(3\theta) \cos(2\theta) - \sin(3\theta) = 0 \] Factoring out \( \sin(3\theta) \): \[ \sin(3\theta)(2 \cos(2\theta) - 1) = 0 \] ### Step 4: Solve the factors This gives us two cases to solve: 1. \( \sin(3\theta) = 0 \) 2. \( 2 \cos(2\theta) - 1 = 0 \) #### Case 1: \( \sin(3\theta) = 0 \) The general solution for \( \sin x = 0 \) is: \[ 3\theta = n\pi \quad \Rightarrow \quad \theta = \frac{n\pi}{3} \] For \( 0 \leq \theta \leq \pi \): - If \( n = 0 \): \( \theta = 0 \) - If \( n = 1 \): \( \theta = \frac{\pi}{3} \) - If \( n = 2 \): \( \theta = \frac{2\pi}{3} \) - If \( n = 3 \): \( \theta = \pi \) #### Case 2: \( 2 \cos(2\theta) - 1 = 0 \) Solving gives: \[ \cos(2\theta) = \frac{1}{2} \] The general solution for \( \cos x = \frac{1}{2} \) is: \[ 2\theta = 2n\pi \pm \frac{\pi}{3} \quad \Rightarrow \quad \theta = n\pi \pm \frac{\pi}{6} \] For \( 0 \leq \theta \leq \pi \): - If \( n = 0 \): \( \theta = \frac{\pi}{6} \) and \( \theta = -\frac{\pi}{6} \) (not valid) - If \( n = 1 \): \( \theta = \pi + \frac{\pi}{6} \) (not valid) - If \( n = 1 \): \( \theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6} \) ### Step 5: Compile all solutions The valid solutions for \( \theta \) in the range \( 0 \leq \theta \leq \pi \) are: - \( \theta = 0 \) - \( \theta = \frac{\pi}{3} \) - \( \theta = \frac{2\pi}{3} \) - \( \theta = \pi \) - \( \theta = \frac{\pi}{6} \) - \( \theta = \frac{5\pi}{6} \) ### Final Answer Thus, the complete set of solutions is: \[ \theta = 0, \frac{\pi}{6}, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{5\pi}{6}, \pi \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise EXERCISE 6|33 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos
  • TRIGONOMETRIC FUNCTION

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |44 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Chapter test |8 Videos

Similar Questions

Explore conceptually related problems

Find all the value of theta satisfying the equation , sin 7 theta = sin theta + sin 3 theta such that 0 le theta le pi

Find all the values of theta satisfying the equation cos 2 theta - cos 8 theta + cos 6 theta =1, such that 0 le theta le pi.

Find the most general values of theta satisfying the equation : sin theta = -1

Solve that equation : sintheta+sin3theta+sin5theta=0.

sin^(3)theta + sin theta - sin theta cos^(2)theta =

Find the values of theta which satisfy r sin theta=3 and r=4 (1 + sin theta), 0 <= theta <= 2 pi

Find the values of cos theta and tan theta when sin theta =-3/5 and pi < theta < (3pi)/2

Solve: sin 7 theta + sin 4 theta + sin theta = 0, 0 lt theta lt ( pi)/(2)

Solve cos theta * cos 2 theta * cos 3 theta = (1)/( 4), 0 le theta le pi

Find values of theta satisfying sintheta+sin5theta=sin3theta such that 0<=theta<=pi