Home
Class 11
MATHS
cos theta + sin theta - sin 2 theta = (1...

`cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos \theta + \sin \theta - \sin 2\theta = \frac{1}{2} \) for \( 0 < \theta < \frac{\pi}{2} \), we will follow these steps: ### Step 1: Rewrite the equation We start with the original equation: \[ \cos \theta + \sin \theta - \sin 2\theta = \frac{1}{2} \] Recall that \( \sin 2\theta = 2 \sin \theta \cos \theta \). Substituting this into the equation gives: \[ \cos \theta + \sin \theta - 2 \sin \theta \cos \theta = \frac{1}{2} \] ### Step 2: Rearranging the equation Rearranging the equation, we have: \[ \cos \theta + \sin \theta - 2 \sin \theta \cos \theta - \frac{1}{2} = 0 \] This can be rearranged to: \[ \sin \theta - 2 \sin \theta \cos \theta = \frac{1}{2} - \cos \theta \] ### Step 3: Factor out common terms Now, we can factor out \( \sin \theta \) from the left-hand side: \[ \sin \theta (1 - 2 \cos \theta) = \frac{1 - 2 \cos \theta}{2} \] ### Step 4: Set the equation to zero We can simplify this to: \[ 2 \sin \theta (1 - 2 \cos \theta) - (1 - 2 \cos \theta) = 0 \] Factoring out \( (1 - 2 \cos \theta) \): \[ (1 - 2 \cos \theta)(2 \sin \theta - 1) = 0 \] ### Step 5: Solve each factor Now we have two factors to solve: 1. \( 1 - 2 \cos \theta = 0 \) 2. \( 2 \sin \theta - 1 = 0 \) #### Factor 1: Solve \( 1 - 2 \cos \theta = 0 \) \[ 2 \cos \theta = 1 \implies \cos \theta = \frac{1}{2} \] This gives: \[ \theta = \frac{\pi}{3} \] #### Factor 2: Solve \( 2 \sin \theta - 1 = 0 \) \[ 2 \sin \theta = 1 \implies \sin \theta = \frac{1}{2} \] This gives: \[ \theta = \frac{\pi}{6} \] ### Step 6: Consider the range Since \( 0 < \theta < \frac{\pi}{2} \), both solutions \( \theta = \frac{\pi}{3} \) and \( \theta = \frac{\pi}{6} \) are valid. ### Final Answer Thus, the solutions to the equation are: \[ \theta = \frac{\pi}{3} \quad \text{and} \quad \theta = \frac{\pi}{6} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos
  • TRIGONOMETRIC FUNCTION

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |44 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Chapter test |8 Videos

Similar Questions

Explore conceptually related problems

Solve: sin 7 theta + sin 4 theta + sin theta = 0, 0 lt theta lt ( pi)/(2)

The values of theta satisfying "sin" 7 theta = "sin" 4 theta -"sin" theta " and " 0 lt theta lt (pi)/(2) are

If cos theta - sin theta = (1)/(5) , where 0 lt theta lt (pi)/(4) , then

Statement I If 2 cos theta + sin theta=1(theta != (pi)/(2)) then the value of 7 cos theta + 6 sin theta is 2. Statement II If cos 2theta-sin theta=1/2, 0 lt theta lt pi/2 , then sin theta+cos 6 theta = 0 .

Solve cos ^(2) theta - sin theta - (1)/(4) =0 ( 0^(@) lt theta lt 360^(@)).

Solve : cos 6 theta + cos 4 theta + cos 2 theta + 1 = 0, 0^(@) lt theta lt 180^(@)

Solve sin 9 theta = sin theta, for 0^(@) lt theta lt 360^(@).

cot^(2) theta - (1 + sqrt3) cot theta + sqrt3 = 0,0 lt theta lt (pi)/(2)

Prove that ( cos theta + cos 2 theta + cos 3 theta + cos 4 theta)/(sin theta + sin 2 theta + sin 3 theta + sin 4 theta)= cot ""(5theta)/(2).

If 1 + sintheta + sin^2theta + sin^3theta +.. oo = 4 + 2sqrt3, 0 lt theta lt pi, theta != pi/2 then