Home
Class 11
MATHS
cot^(2) theta - (1 + sqrt3) cot theta +...

`cot^(2) theta - (1 + sqrt3) cot theta + sqrt3 = 0,0 lt theta lt (pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cot^2 \theta - (1 + \sqrt{3}) \cot \theta + \sqrt{3} = 0 \) for \( 0 < \theta < \frac{\pi}{2} \), we will follow these steps: ### Step 1: Rewrite the equation The given equation is: \[ \cot^2 \theta - (1 + \sqrt{3}) \cot \theta + \sqrt{3} = 0 \] ### Step 2: Let \( x = \cot \theta \) We can substitute \( x \) for \( \cot \theta \): \[ x^2 - (1 + \sqrt{3})x + \sqrt{3} = 0 \] ### Step 3: Use the quadratic formula To solve for \( x \), we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1 \), \( b = -(1 + \sqrt{3}) \), and \( c = \sqrt{3} \). ### Step 4: Calculate the discriminant First, calculate the discriminant \( b^2 - 4ac \): \[ b^2 = (1 + \sqrt{3})^2 = 1 + 2\sqrt{3} + 3 = 4 + 2\sqrt{3} \] \[ 4ac = 4 \cdot 1 \cdot \sqrt{3} = 4\sqrt{3} \] Now, the discriminant is: \[ D = (4 + 2\sqrt{3}) - 4\sqrt{3} = 4 - 2\sqrt{3} \] ### Step 5: Solve for \( x \) Now plug the values into the quadratic formula: \[ x = \frac{(1 + \sqrt{3}) \pm \sqrt{4 - 2\sqrt{3}}}{2} \] ### Step 6: Simplify the square root To simplify \( \sqrt{4 - 2\sqrt{3}} \), we can express it as: \[ \sqrt{4 - 2\sqrt{3}} = \sqrt{(\sqrt{3} - 1)^2} = \sqrt{3} - 1 \] ### Step 7: Substitute back into the formula Now substituting back, we have: \[ x = \frac{(1 + \sqrt{3}) \pm (\sqrt{3} - 1)}{2} \] ### Step 8: Calculate the two possible values for \( x \) 1. For the positive case: \[ x_1 = \frac{(1 + \sqrt{3}) + (\sqrt{3} - 1)}{2} = \frac{2\sqrt{3}}{2} = \sqrt{3} \] 2. For the negative case: \[ x_2 = \frac{(1 + \sqrt{3}) - (\sqrt{3} - 1)}{2} = \frac{2}{2} = 1 \] ### Step 9: Find \( \theta \) Now we have two values for \( x \): 1. \( x = \sqrt{3} \) implies \( \cot \theta = \sqrt{3} \) which gives \( \theta = \frac{\pi}{6} \). 2. \( x = 1 \) implies \( \cot \theta = 1 \) which gives \( \theta = \frac{\pi}{4} \). ### Step 10: Conclusion Thus, the solutions for \( \theta \) in the interval \( 0 < \theta < \frac{\pi}{2} \) are: \[ \theta = \frac{\pi}{6}, \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos
  • TRIGONOMETRIC FUNCTION

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |44 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Chapter test |8 Videos

Similar Questions

Explore conceptually related problems

Solve for the two smallest positive values of theta, to the nearest minute, cot ^(2) theta - 3 cot theta - 2 =0, (0^(@) lt theta lt 360^(@)).

Solve: sin 7 theta + sin 4 theta + sin theta = 0, 0 lt theta lt ( pi)/(2)

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

The solution set of the equation 4 "sin" theta "cos" theta- 2 "cos" theta -2sqrt(3) "sin" theta + sqrt(3) =0 " in the interval" (0, 2 pi) , is

Number of solutions of the equation cot( theta ) + cot( theta +(pi)/(3))+ cos ( theta -(pi)/(3))+ cot( 3 theta ) =0 , where theta in ( 0,(pi)/(2))

If beta is one of the angles between the normals to the ellipse, x^2+3y^2=9 at the points (3 cos theta, sqrt(3) sin theta)" and "(-3 sin theta, sqrt(3) cos theta), theta in (0,(pi)/(2)) , then (2 cot beta)/(sin 2 theta) is equal to:

If cos theta - sin theta = (1)/(5) , where 0 lt theta lt (pi)/(4) , then

If alpha and beta are roots of x^(2)-(sqrt(1-cos 2 theta))x+theta=0 , where 0 lt theta lt (pi)/2 . Then lim_(theta to 0^(+))(1/(alpha)+1/(beta)) is

The values of theta satisfying "sin" 7 theta = "sin" 4 theta -"sin" theta " and " 0 lt theta lt (pi)/(2) are

Solve cos ^(2) theta - sin theta - (1)/(4) =0 ( 0^(@) lt theta lt 360^(@)).

ICSE-TRIGONOMETRIC EQUATIONS -EXERCISE 6
  1. cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

    Text Solution

    |

  2. sin 5 theta = cos 2 theta , 0^(@) lt theta lt 180^(@). Find value of ...

    Text Solution

    |

  3. cot^(2) theta - (1 + sqrt3) cot theta + sqrt3 = 0,0 lt theta lt (pi)/...

    Text Solution

    |

  4. sin x + cos (x + 30^(@)) = 0, 0 ^(@) lt x lt 360^(@)

    Text Solution

    |

  5. Solve : cos 6 theta + cos 4 theta + cos 2 theta + 1 = 0, 0^(@) lt thet...

    Text Solution

    |

  6. Solve:sin 7 theta + sin 4 theta + sin theta = 0, 0 lt theta lt ( pi)/(...

    Text Solution

    |

  7. Solve the general vlaue. 2cos ^(2) theta - 5 cos theta + 2 = 0

    Text Solution

    |

  8. Solve the general vlaue. 2 sin ^(2) x + sqrt3 cos x + 1 =0

    Text Solution

    |

  9. Solve the general value. 2 + sqrt3 sec x - 4 cos x = 2 sqrt3

    Text Solution

    |

  10. Solve the general value. tan ^(2) theta - (1 + sqrt3) tan theta + sq...

    Text Solution

    |

  11. Solve the general vlaue. tan theta + 4 cot 2 theta + 1=0

    Text Solution

    |

  12. Solve the general vlaue. tan theta + tan 2 theta + sqrt3 tan theta t...

    Text Solution

    |

  13. Solve the general vlaue. cot theta + tan theta = 2 cosec theta

    Text Solution

    |

  14. Solve the general vlaue. 2 cos theta + cos 3 theta =0

    Text Solution

    |

  15. Solve the general vlaue. 2 sin 2 x - sin x =0

    Text Solution

    |

  16. Solve the general vlaue. tan 2x + 2 tan x =0

    Text Solution

    |

  17. Solve the general vlaue. sin 7 theta + sin 4 theta + sin theta =0

    Text Solution

    |

  18. Solve the general vlaue. cos theta + cos 2 theta + cos 3 theta =0

    Text Solution

    |

  19. Solve the general vlaue. sin theta + cos theta = sqrt2

    Text Solution

    |

  20. Solve the general vlaue. sin theta + sqrt3 cos theta = sqrt2

    Text Solution

    |