Home
Class 11
MATHS
sin x + cos (x + 30^(@)) = 0, 0 ^(@) lt ...

`sin x + cos (x + 30^(@)) = 0, 0 ^(@) lt x lt 360^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin x + \cos(x + 30^\circ) = 0 \) for \( 0^\circ < x < 360^\circ \), we can follow these steps: ### Step 1: Rewrite the equation Start with the original equation: \[ \sin x + \cos(x + 30^\circ) = 0 \] ### Step 2: Use the cosine addition formula We can expand \( \cos(x + 30^\circ) \) using the cosine addition formula: \[ \cos(a + b) = \cos a \cos b - \sin a \sin b \] Here, \( a = x \) and \( b = 30^\circ \). Thus: \[ \cos(x + 30^\circ) = \cos x \cos 30^\circ - \sin x \sin 30^\circ \] Substituting the values of \( \cos 30^\circ = \frac{\sqrt{3}}{2} \) and \( \sin 30^\circ = \frac{1}{2} \): \[ \cos(x + 30^\circ) = \cos x \cdot \frac{\sqrt{3}}{2} - \sin x \cdot \frac{1}{2} \] ### Step 3: Substitute back into the equation Now substitute this back into the equation: \[ \sin x + \left( \cos x \cdot \frac{\sqrt{3}}{2} - \sin x \cdot \frac{1}{2} \right) = 0 \] This simplifies to: \[ \sin x + \frac{\sqrt{3}}{2} \cos x - \frac{1}{2} \sin x = 0 \] ### Step 4: Combine like terms Combine the sine terms: \[ \left(1 - \frac{1}{2}\right) \sin x + \frac{\sqrt{3}}{2} \cos x = 0 \] This simplifies to: \[ \frac{1}{2} \sin x + \frac{\sqrt{3}}{2} \cos x = 0 \] ### Step 5: Multiply through by 2 To eliminate the fraction, multiply the entire equation by 2: \[ \sin x + \sqrt{3} \cos x = 0 \] ### Step 6: Rearrange the equation Rearranging gives: \[ \sin x = -\sqrt{3} \cos x \] ### Step 7: Divide by cos x Dividing both sides by \( \cos x \) (assuming \( \cos x \neq 0 \)): \[ \tan x = -\sqrt{3} \] ### Step 8: Find the general solutions The tangent function is negative in the second and fourth quadrants. The reference angle for \( \tan^{-1}(\sqrt{3}) \) is \( 60^\circ \) (or \( \frac{\pi}{3} \) radians). Thus, the solutions for \( x \) are: \[ x = 180^\circ - 60^\circ = 120^\circ \quad \text{(2nd quadrant)} \] \[ x = 360^\circ - 60^\circ = 300^\circ \quad \text{(4th quadrant)} \] ### Final Answers The solutions in the interval \( 0^\circ < x < 360^\circ \) are: \[ x = 120^\circ, \quad x = 300^\circ \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos
  • TRIGONOMETRIC FUNCTION

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |44 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Chapter test |8 Videos

Similar Questions

Explore conceptually related problems

Solve: sin 5x - sin 3x - sin x =0, 0^(@) lt x lt 360^(@).

Solve: sin ^(2) x + sin x - 2 =0 , (0^(@) lt x lt 360^(@)).

Find all values of x which satisfy 5 sin x = 4 cos x, (0^(@) lt x lt 360^(@))

Solve cos ^(2) theta - sin theta - (1)/(4) =0 ( 0^(@) lt theta lt 360^(@)).

Solve 0 lt |x| lt 2

Number of solutions of the equation cos^(4) 2x+2 sin^(2) 2x =17 (cos x + sin x)^(8), 0 lt x lt 2 pi is

Solve sin 9 theta = sin theta, for 0^(@) lt theta lt 360^(@).

Express sin^(-1)((sin x+ cos x)/(sqrt2)) , where -(pi)/(4) lt x lt (pi)/(4) , in the simplest form.

Find the point of local maxima or local minima of the function f(x) = (sin^(4) x + cos^(4) x) " in " 0 lt x lt (pi)/(2)

y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

ICSE-TRIGONOMETRIC EQUATIONS -EXERCISE 6
  1. sin 5 theta = cos 2 theta , 0^(@) lt theta lt 180^(@). Find value of ...

    Text Solution

    |

  2. cot^(2) theta - (1 + sqrt3) cot theta + sqrt3 = 0,0 lt theta lt (pi)/...

    Text Solution

    |

  3. sin x + cos (x + 30^(@)) = 0, 0 ^(@) lt x lt 360^(@)

    Text Solution

    |

  4. Solve : cos 6 theta + cos 4 theta + cos 2 theta + 1 = 0, 0^(@) lt thet...

    Text Solution

    |

  5. Solve:sin 7 theta + sin 4 theta + sin theta = 0, 0 lt theta lt ( pi)/(...

    Text Solution

    |

  6. Solve the general vlaue. 2cos ^(2) theta - 5 cos theta + 2 = 0

    Text Solution

    |

  7. Solve the general vlaue. 2 sin ^(2) x + sqrt3 cos x + 1 =0

    Text Solution

    |

  8. Solve the general value. 2 + sqrt3 sec x - 4 cos x = 2 sqrt3

    Text Solution

    |

  9. Solve the general value. tan ^(2) theta - (1 + sqrt3) tan theta + sq...

    Text Solution

    |

  10. Solve the general vlaue. tan theta + 4 cot 2 theta + 1=0

    Text Solution

    |

  11. Solve the general vlaue. tan theta + tan 2 theta + sqrt3 tan theta t...

    Text Solution

    |

  12. Solve the general vlaue. cot theta + tan theta = 2 cosec theta

    Text Solution

    |

  13. Solve the general vlaue. 2 cos theta + cos 3 theta =0

    Text Solution

    |

  14. Solve the general vlaue. 2 sin 2 x - sin x =0

    Text Solution

    |

  15. Solve the general vlaue. tan 2x + 2 tan x =0

    Text Solution

    |

  16. Solve the general vlaue. sin 7 theta + sin 4 theta + sin theta =0

    Text Solution

    |

  17. Solve the general vlaue. cos theta + cos 2 theta + cos 3 theta =0

    Text Solution

    |

  18. Solve the general vlaue. sin theta + cos theta = sqrt2

    Text Solution

    |

  19. Solve the general vlaue. sin theta + sqrt3 cos theta = sqrt2

    Text Solution

    |

  20. Solve the general vlaue. sqrt2 sec theta + tan theta =1

    Text Solution

    |