Home
Class 11
MATHS
Solve : cos 6 theta + cos 4 theta + cos ...

Solve : `cos 6 theta + cos 4 theta + cos 2 theta + 1 = 0, 0^(@) lt theta lt 180^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos 6\theta + \cos 4\theta + \cos 2\theta + 1 = 0 \) for \( 0^\circ < \theta < 180^\circ \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \cos 6\theta + \cos 4\theta + \cos 2\theta + 1 = 0 \] ### Step 2: Group terms and use cosine sum formulas We can group the first two cosine terms: \[ \cos 6\theta + \cos 4\theta = 2 \cos\left(\frac{6\theta + 4\theta}{2}\right) \cos\left(\frac{6\theta - 4\theta}{2}\right) \] This simplifies to: \[ 2 \cos(5\theta) \cos(\theta) \] Thus, we can rewrite the equation as: \[ 2 \cos(5\theta) \cos(\theta) + \cos 2\theta + 1 = 0 \] ### Step 3: Substitute \( \cos 2\theta \) Using the identity \( \cos 2\theta = 2\cos^2\theta - 1 \), we substitute: \[ 2 \cos(5\theta) \cos(\theta) + (2\cos^2\theta - 1) + 1 = 0 \] This simplifies to: \[ 2 \cos(5\theta) \cos(\theta) + 2\cos^2\theta = 0 \] ### Step 4: Factor the equation We can factor out \( 2\cos\theta \): \[ 2\cos\theta (\cos(5\theta) + \cos\theta) = 0 \] ### Step 5: Solve each factor 1. **From \( 2\cos\theta = 0 \)**: \[ \cos\theta = 0 \implies \theta = 90^\circ \] 2. **From \( \cos(5\theta) + \cos\theta = 0 \)**: \[ \cos(5\theta) = -\cos\theta \] This implies: \[ \cos(5\theta) + \cos\theta = 0 \implies 2\cos\left(\frac{5\theta + \theta}{2}\right) \cos\left(\frac{5\theta - \theta}{2}\right) = 0 \] Simplifying gives: \[ 2\cos(3\theta) \cos(2\theta) = 0 \] ### Step 6: Solve each cosine factor 1. **From \( \cos(3\theta) = 0 \)**: \[ 3\theta = 90^\circ + n \cdot 180^\circ \implies \theta = 30^\circ + n \cdot 60^\circ \] For \( n = 0 \): \( \theta = 30^\circ \) For \( n = 1 \): \( \theta = 90^\circ \) For \( n = 2 \): \( \theta = 150^\circ \) 2. **From \( \cos(2\theta) = 0 \)**: \[ 2\theta = 90^\circ + n \cdot 180^\circ \implies \theta = 45^\circ + n \cdot 90^\circ \] For \( n = 0 \): \( \theta = 45^\circ \) For \( n = 1 \): \( \theta = 135^\circ \) ### Step 7: Collect all solutions The solutions we found are: - From \( \cos\theta = 0 \): \( \theta = 90^\circ \) - From \( \cos(3\theta) = 0 \): \( \theta = 30^\circ, 90^\circ, 150^\circ \) - From \( \cos(2\theta) = 0 \): \( \theta = 45^\circ, 135^\circ \) ### Final Solutions Thus, the complete set of solutions in the interval \( 0^\circ < \theta < 180^\circ \) is: \[ \theta = 30^\circ, 45^\circ, 90^\circ, 135^\circ, 150^\circ \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos
  • TRIGONOMETRIC FUNCTION

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |44 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Chapter test |8 Videos

Similar Questions

Explore conceptually related problems

Solve cos theta+cos 3 theta-2 cos 2 theta=0 .

Solve cos theta * cos 2 theta * cos 3 theta = (1)/( 4), 0 le theta le pi

Solve 2 sin theta cos theta = cos theta. ( 0^(@) < theta lt 360^(@)).

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

Solve: sin 7 theta + sin 4 theta + sin theta = 0, 0 lt theta lt ( pi)/(2)

Solve cos ^(2) theta - sin theta - (1)/(4) =0 ( 0^(@) lt theta lt 360^(@)).

Solve cos theta+cos 7 theta+cos 3theta+cos 5 theta=0 ,

Solve: cos5theta=cos2theta

sin 5 theta = cos 2 theta , 0^(@) lt theta lt 180^(@). Find value of theta

Solve cos theta+cos 2theta+cos 3theta=0 .

ICSE-TRIGONOMETRIC EQUATIONS -EXERCISE 6
  1. cot^(2) theta - (1 + sqrt3) cot theta + sqrt3 = 0,0 lt theta lt (pi)/...

    Text Solution

    |

  2. sin x + cos (x + 30^(@)) = 0, 0 ^(@) lt x lt 360^(@)

    Text Solution

    |

  3. Solve : cos 6 theta + cos 4 theta + cos 2 theta + 1 = 0, 0^(@) lt thet...

    Text Solution

    |

  4. Solve:sin 7 theta + sin 4 theta + sin theta = 0, 0 lt theta lt ( pi)/(...

    Text Solution

    |

  5. Solve the general vlaue. 2cos ^(2) theta - 5 cos theta + 2 = 0

    Text Solution

    |

  6. Solve the general vlaue. 2 sin ^(2) x + sqrt3 cos x + 1 =0

    Text Solution

    |

  7. Solve the general value. 2 + sqrt3 sec x - 4 cos x = 2 sqrt3

    Text Solution

    |

  8. Solve the general value. tan ^(2) theta - (1 + sqrt3) tan theta + sq...

    Text Solution

    |

  9. Solve the general vlaue. tan theta + 4 cot 2 theta + 1=0

    Text Solution

    |

  10. Solve the general vlaue. tan theta + tan 2 theta + sqrt3 tan theta t...

    Text Solution

    |

  11. Solve the general vlaue. cot theta + tan theta = 2 cosec theta

    Text Solution

    |

  12. Solve the general vlaue. 2 cos theta + cos 3 theta =0

    Text Solution

    |

  13. Solve the general vlaue. 2 sin 2 x - sin x =0

    Text Solution

    |

  14. Solve the general vlaue. tan 2x + 2 tan x =0

    Text Solution

    |

  15. Solve the general vlaue. sin 7 theta + sin 4 theta + sin theta =0

    Text Solution

    |

  16. Solve the general vlaue. cos theta + cos 2 theta + cos 3 theta =0

    Text Solution

    |

  17. Solve the general vlaue. sin theta + cos theta = sqrt2

    Text Solution

    |

  18. Solve the general vlaue. sin theta + sqrt3 cos theta = sqrt2

    Text Solution

    |

  19. Solve the general vlaue. sqrt2 sec theta + tan theta =1

    Text Solution

    |

  20. Solve the general vlaue. 3-2cos theta -4sin theta - cos 2 theta + si...

    Text Solution

    |