Home
Class 11
MATHS
Find all the values of theta satisfying...

Find all the values of ` theta `satisfying the equation ` cos 2 theta - cos 8 theta + cos 6 theta =1,` such that `0 le theta le pi.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos 2\theta - \cos 8\theta + \cos 6\theta = 1 \) for \( 0 \leq \theta \leq \pi \), we can follow these steps: ### Step 1: Rearranging the Equation We start by rearranging the equation: \[ \cos 2\theta + \cos 6\theta - \cos 8\theta = 1 \] ### Step 2: Using the Cosine Addition Formula We can use the cosine addition formula: \[ \cos A + \cos B = 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) \] Let \( A = 2\theta \) and \( B = 6\theta \). Then, \[ \cos 2\theta + \cos 6\theta = 2 \cos\left(\frac{2\theta + 6\theta}{2}\right) \cos\left(\frac{2\theta - 6\theta}{2}\right) = 2 \cos(4\theta) \cos(-2\theta) \] Since \( \cos(-x) = \cos x \), we have: \[ \cos 2\theta + \cos 6\theta = 2 \cos(4\theta) \cos(2\theta) \] ### Step 3: Substituting Back into the Equation Substituting back into the equation gives: \[ 2 \cos(4\theta) \cos(2\theta) - \cos 8\theta = 1 \] ### Step 4: Rewriting \( \cos 8\theta \) Using the double angle formula, we can express \( \cos 8\theta \) as: \[ \cos 8\theta = 2 \cos^2(4\theta) - 1 \] So, the equation becomes: \[ 2 \cos(4\theta) \cos(2\theta) - (2 \cos^2(4\theta) - 1) = 1 \] ### Step 5: Simplifying the Equation Simplifying gives: \[ 2 \cos(4\theta) \cos(2\theta) - 2 \cos^2(4\theta) + 1 = 1 \] This simplifies to: \[ 2 \cos(4\theta) \cos(2\theta) - 2 \cos^2(4\theta) = 0 \] ### Step 6: Factoring Out Common Terms Factoring out \( 2 \cos(4\theta) \): \[ 2 \cos(4\theta) (\cos(2\theta) - \cos(4\theta)) = 0 \] This gives us two cases to solve: 1. \( \cos(4\theta) = 0 \) 2. \( \cos(2\theta) - \cos(4\theta) = 0 \) ### Step 7: Solving \( \cos(4\theta) = 0 \) The solutions for \( \cos(4\theta) = 0 \) are: \[ 4\theta = \frac{(2n + 1)\pi}{2} \implies \theta = \frac{(2n + 1)\pi}{8} \] For \( n = 0, 1, 2, 3 \): - \( n = 0 \): \( \theta = \frac{\pi}{8} \) - \( n = 1 \): \( \theta = \frac{3\pi}{8} \) - \( n = 2 \): \( \theta = \frac{5\pi}{8} \) - \( n = 3 \): \( \theta = \frac{7\pi}{8} \) - \( n = 4 \): \( \theta = \frac{9\pi}{8} \) (not valid since \( > \pi \)) ### Step 8: Solving \( \cos(2\theta) - \cos(4\theta) = 0 \) This implies: \[ \cos(2\theta) = \cos(4\theta) \] Using the identity \( \cos A = \cos B \) gives: \[ 2\theta = 4\theta + 2k\pi \quad \text{or} \quad 2\theta = -4\theta + 2k\pi \] From \( 2\theta = 4\theta + 2k\pi \): \[ -2\theta = 2k\pi \implies \theta = -k\pi \quad \text{(not valid)} \] From \( 2\theta = -4\theta + 2k\pi \): \[ 6\theta = 2k\pi \implies \theta = \frac{k\pi}{3} \] For \( k = 0, 1, 2, 3 \): - \( k = 0 \): \( \theta = 0 \) - \( k = 1 \): \( \theta = \frac{\pi}{3} \) - \( k = 2 \): \( \theta = \frac{2\pi}{3} \) - \( k = 3 \): \( \theta = \pi \) ### Step 9: Collecting All Valid Solutions Combining all the valid solutions: - From \( \cos(4\theta) = 0 \): \( \frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{7\pi}{8} \) - From \( \cos(2\theta) - \cos(4\theta) = 0 \): \( 0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi \) ### Final Values of \( \theta \) Thus, the final values of \( \theta \) satisfying the equation in the interval \( [0, \pi] \) are: \[ 0, \frac{\pi}{8}, \frac{3\pi}{8}, \frac{\pi}{3}, \frac{5\pi}{8}, \frac{2\pi}{3}, \frac{7\pi}{8}, \pi \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos
  • TRIGONOMETRIC FUNCTION

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |44 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Chapter test |8 Videos

Similar Questions

Explore conceptually related problems

Find all the values of theta satisfying the equation sin theta + sin 5 theta = sin 3 theta, such that 0 le theta le pi.

Find all the value of theta satisfying the equation , sin 7 theta = sin theta + sin 3 theta such that 0 le theta le pi

Solve cos theta * cos 2 theta * cos 3 theta = (1)/( 4), 0 le theta le pi

Find all value of theta , between 0 & pi , which satisfy the equation; cos theta * cos 2 theta * cos 3theta = 1/4 .

Find the general value of theta from the equation costheta+cos2theta + cos3theta=0 .

Smallest positive value of theta satisfying 8sinthetacos2thetasin3thetacos4theta=cos6theta is

The number of different values of theta satisfying the equation cos theta + cos 2 theta = -1 , and at the same time satisfying the condition 0 lt theta lt 360^(@) is :

Find the general values of theta which satisfies the equation tan theta =-1 and cos theta =(1)/(sqrt(2))

Find the general values of theta which satisfies the equation tan theta =-1 and cos theta =(1)/(sqrt(2))

Find the values of theta between 0^(@) and 360^(@) which satisfy the equation 3 cos 2 theta - sin theta = 2.

ICSE-TRIGONOMETRIC EQUATIONS -EXERCISE 6
  1. Solve the general vlaue. 2 sin ^(2) x + sqrt3 cos x + 1 =0

    Text Solution

    |

  2. Solve the general value. 2 + sqrt3 sec x - 4 cos x = 2 sqrt3

    Text Solution

    |

  3. Solve the general value. tan ^(2) theta - (1 + sqrt3) tan theta + sq...

    Text Solution

    |

  4. Solve the general vlaue. tan theta + 4 cot 2 theta + 1=0

    Text Solution

    |

  5. Solve the general vlaue. tan theta + tan 2 theta + sqrt3 tan theta t...

    Text Solution

    |

  6. Solve the general vlaue. cot theta + tan theta = 2 cosec theta

    Text Solution

    |

  7. Solve the general vlaue. 2 cos theta + cos 3 theta =0

    Text Solution

    |

  8. Solve the general vlaue. 2 sin 2 x - sin x =0

    Text Solution

    |

  9. Solve the general vlaue. tan 2x + 2 tan x =0

    Text Solution

    |

  10. Solve the general vlaue. sin 7 theta + sin 4 theta + sin theta =0

    Text Solution

    |

  11. Solve the general vlaue. cos theta + cos 2 theta + cos 3 theta =0

    Text Solution

    |

  12. Solve the general vlaue. sin theta + cos theta = sqrt2

    Text Solution

    |

  13. Solve the general vlaue. sin theta + sqrt3 cos theta = sqrt2

    Text Solution

    |

  14. Solve the general vlaue. sqrt2 sec theta + tan theta =1

    Text Solution

    |

  15. Solve the general vlaue. 3-2cos theta -4sin theta - cos 2 theta + si...

    Text Solution

    |

  16. If the equation a cos 2 theta +b sin 2 theta = c had theta (1), the...

    Text Solution

    |

  17. If alpha , beta are two different values of theta lying between 0...

    Text Solution

    |

  18. Find all the values of theta satisfying the equation cos 2 theta - c...

    Text Solution

    |

  19. Find the general value of theta in sec theta - cosec theta = (4)/(3)

    Text Solution

    |

  20. Find the smallest positive number p for which the equation cos (p sinx...

    Text Solution

    |