Home
Class 11
MATHS
Solve: sin 5x - sin 3x - sin x =0, 0^(@)...

Solve: `sin 5x - sin 3x - sin x =0, 0^(@) lt x lt 360^(@).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin 5x - \sin 3x - \sin x = 0 \) for \( 0^\circ < x < 360^\circ \), we can follow these steps: ### Step 1: Use the sine subtraction formula We can use the identity for the difference of sines: \[ \sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] Applying this to \( \sin 5x - \sin 3x \): Let \( A = 5x \) and \( B = 3x \). \[ \sin 5x - \sin 3x = 2 \cos\left(\frac{5x + 3x}{2}\right) \sin\left(\frac{5x - 3x}{2}\right) = 2 \cos(4x) \sin(x) \] So, we can rewrite the equation as: \[ 2 \cos(4x) \sin(x) - \sin x = 0 \] ### Step 2: Factor out \( \sin x \) Now, we can factor out \( \sin x \): \[ \sin x (2 \cos(4x) - 1) = 0 \] This gives us two equations to solve: 1. \( \sin x = 0 \) 2. \( 2 \cos(4x) - 1 = 0 \) ### Step 3: Solve \( \sin x = 0 \) The solutions for \( \sin x = 0 \) in the interval \( 0^\circ < x < 360^\circ \) are: \[ x = 0^\circ, 180^\circ, 360^\circ \] However, since we need \( 0^\circ < x < 360^\circ \), we only take: \[ x = 180^\circ \] ### Step 4: Solve \( 2 \cos(4x) - 1 = 0 \) Rearranging gives: \[ \cos(4x) = \frac{1}{2} \] The general solutions for \( \cos \theta = \frac{1}{2} \) are: \[ \theta = 60^\circ + 360^\circ n \quad \text{or} \quad \theta = 300^\circ + 360^\circ n \] Substituting \( \theta = 4x \): 1. \( 4x = 60^\circ + 360^\circ n \) 2. \( 4x = 300^\circ + 360^\circ n \) ### Step 5: Solve for \( x \) Dividing by 4 gives: 1. \( x = 15^\circ + 90^\circ n \) 2. \( x = 75^\circ + 90^\circ n \) Now we will find values of \( x \) for \( n = 0, 1, 2, \ldots \) that fall within \( 0^\circ < x < 360^\circ \). #### For \( x = 15^\circ + 90^\circ n \): - \( n = 0 \): \( x = 15^\circ \) - \( n = 1 \): \( x = 105^\circ \) - \( n = 2 \): \( x = 195^\circ \) - \( n = 3 \): \( x = 285^\circ \) - \( n = 4 \): \( x = 375^\circ \) (not valid) #### For \( x = 75^\circ + 90^\circ n \): - \( n = 0 \): \( x = 75^\circ \) - \( n = 1 \): \( x = 165^\circ \) - \( n = 2 \): \( x = 255^\circ \) - \( n = 3 \): \( x = 345^\circ \) ### Step 6: Compile all valid solutions Combining all valid solutions: - From \( \sin x = 0 \): \( 180^\circ \) - From \( 2 \cos(4x) - 1 = 0 \): \( 15^\circ, 105^\circ, 75^\circ, 165^\circ, 195^\circ, 255^\circ, 285^\circ, 345^\circ \) Thus, the final solutions for \( x \) in the interval \( 0^\circ < x < 360^\circ \) are: \[ x = 15^\circ, 75^\circ, 105^\circ, 165^\circ, 180^\circ, 195^\circ, 255^\circ, 285^\circ, 345^\circ \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise EXERCISE 6|33 Videos
  • TRIGONOMETRIC FUNCTION

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |44 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Chapter test |8 Videos

Similar Questions

Explore conceptually related problems

Solve: sin ^(2) x + sin x - 2 =0 , (0^(@) lt x lt 360^(@)).

Solve cos x - sqrt3 sin x =1, 0^(@) le x le 360 ^(@).

sin x + cos (x + 30^(@)) = 0, 0 ^(@) lt x lt 360^(@)

Solve 2 sin ^(2) phi = sin phi, ( 0^(@) le phi lt 360^(@)).

Find all values of x which satisfy 5 sin x = 4 cos x, (0^(@) lt x lt 360^(@))

Solve sin 9 theta = sin theta, for 0^(@) lt theta lt 360^(@).

Solve cos ^(2) theta - sin theta - (1)/(4) =0 ( 0^(@) lt theta lt 360^(@)).

Solve : "sin" 7x+"sin" 4x+"sin" x=0and 0ltxltpi/(2)

Solve sin 3x = cos 2x. (0 lt x lt 2pi).

In the Delta ABCA gt B. If the measures of A and B satisfy the equation 3 sin x - 4 sin ^(3) x - k =0, 0 lt k lt 1. Then the measure of C is