Home
Class 11
MATHS
Solve : tan ((pi)/(4)+ theta) + tan ((pi...

Solve `: tan ((pi)/(4)+ theta) + tan ((pi)/(4) - theta) = 4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan\left(\frac{\pi}{4} + \theta\right) + \tan\left(\frac{\pi}{4} - \theta\right) = 4 \), we can follow these steps: ### Step 1: Apply the tangent addition and subtraction formulas Using the tangent addition and subtraction formulas, we have: \[ \tan\left(\frac{\pi}{4} + \theta\right) = \frac{\tan\frac{\pi}{4} + \tan\theta}{1 - \tan\frac{\pi}{4} \tan\theta} \] \[ \tan\left(\frac{\pi}{4} - \theta\right) = \frac{\tan\frac{\pi}{4} - \tan\theta}{1 + \tan\frac{\pi}{4} \tan\theta} \] Since \( \tan\frac{\pi}{4} = 1 \), we can substitute this into the formulas: \[ \tan\left(\frac{\pi}{4} + \theta\right) = \frac{1 + \tan\theta}{1 - \tan\theta} \] \[ \tan\left(\frac{\pi}{4} - \theta\right) = \frac{1 - \tan\theta}{1 + \tan\theta} \] ### Step 2: Substitute into the original equation Substituting these results into the original equation gives: \[ \frac{1 + \tan\theta}{1 - \tan\theta} + \frac{1 - \tan\theta}{1 + \tan\theta} = 4 \] ### Step 3: Find a common denominator The common denominator for the left-hand side is \( (1 - \tan\theta)(1 + \tan\theta) \): \[ \frac{(1 + \tan\theta)^2 + (1 - \tan\theta)^2}{(1 - \tan\theta)(1 + \tan\theta)} = 4 \] ### Step 4: Expand the numerator Expanding the numerator: \[ (1 + \tan\theta)^2 = 1 + 2\tan\theta + \tan^2\theta \] \[ (1 - \tan\theta)^2 = 1 - 2\tan\theta + \tan^2\theta \] Adding these gives: \[ 1 + 2\tan\theta + \tan^2\theta + 1 - 2\tan\theta + \tan^2\theta = 2 + 2\tan^2\theta \] Thus, we have: \[ \frac{2 + 2\tan^2\theta}{1 - \tan^2\theta} = 4 \] ### Step 5: Cross-multiply Cross-multiplying gives: \[ 2 + 2\tan^2\theta = 4(1 - \tan^2\theta) \] Expanding the right-hand side: \[ 2 + 2\tan^2\theta = 4 - 4\tan^2\theta \] ### Step 6: Rearrange the equation Bringing all terms involving \( \tan^2\theta \) to one side: \[ 2\tan^2\theta + 4\tan^2\theta = 4 - 2 \] \[ 6\tan^2\theta = 2 \] \[ \tan^2\theta = \frac{1}{3} \] ### Step 7: Solve for \( \tan\theta \) Taking the square root gives: \[ \tan\theta = \frac{1}{\sqrt{3}} \quad \text{or} \quad \tan\theta = -\frac{1}{\sqrt{3}} \] ### Step 8: Find the general solutions The angles corresponding to \( \tan\theta = \frac{1}{\sqrt{3}} \) are: \[ \theta = \frac{\pi}{6} + n\pi \quad (n \in \mathbb{Z}) \] The angles corresponding to \( \tan\theta = -\frac{1}{\sqrt{3}} \) are: \[ \theta = \frac{5\pi}{6} + n\pi \quad (n \in \mathbb{Z}) \] ### Final Answer Thus, the general solutions are: \[ \theta = \frac{\pi}{6} + n\pi \quad \text{and} \quad \theta = \frac{5\pi}{6} + n\pi \quad (n \in \mathbb{Z}) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise EXERCISE 6|33 Videos
  • TRIGONOMETRIC FUNCTION

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |44 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Chapter test |8 Videos

Similar Questions

Explore conceptually related problems

Prove that tan ((pi )/(4) + (theta )/(2) ) + tan ((pi )/(4) - (theta)/(2)) = 2 sec theta.

The value of cot((pi)/(4)+theta)cot((pi)/(4)-theta) is

Prove that: tan(pi/4+theta)+tan(pi/4-theta)=2sec2theta .

tantheta+tan(pi/3+theta)+tan((2pi)/(3)+theta)=3

tan(pi/4+theta)-tan(pi/4-theta)=2tan2theta

Prove that sec theta + tan theta = tan (pi/4 + theta/2)

Solve: tan4 theta = tan2theta

Find the general values of theta from the following equations: tan(pi/4+theta)+tan(pi/4-theta)=4

Solve: tan4theta=-cot(pi/6+theta)

Prove that: (costheta)/(1+sintheta)=tan(pi/4-theta/2)