Home
Class 11
MATHS
Solve the equation sqrt3 cos x + sin x =...

Solve the equation `sqrt3 cos x + sin x =1 ` for `- 2pi lt x le 2pi.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{3} \cos x + \sin x = 1 \) for \( -2\pi < x \leq 2\pi \), we can follow these steps: ### Step 1: Rewrite the Equation Start with the given equation: \[ \sqrt{3} \cos x + \sin x = 1 \] ### Step 2: Divide by 2 To simplify the equation, divide all terms by 2: \[ \frac{\sqrt{3}}{2} \cos x + \frac{1}{2} \sin x = \frac{1}{2} \] ### Step 3: Identify Trigonometric Values Recognize that: \[ \frac{\sqrt{3}}{2} = \sin\left(\frac{\pi}{3}\right) \quad \text{and} \quad \frac{1}{2} = \cos\left(\frac{\pi}{3}\right) \] Thus, we can rewrite the equation as: \[ \sin\left(\frac{\pi}{3}\right) \cos x + \cos\left(\frac{\pi}{3}\right) \sin x = \frac{1}{2} \] ### Step 4: Apply the Sine Addition Formula Using the sine addition formula \( \sin(A + B) = \sin A \cos B + \cos A \sin B \): \[ \sin\left(x + \frac{\pi}{3}\right) = \frac{1}{2} \] ### Step 5: Solve for \( x + \frac{\pi}{3} \) The general solution for \( \sin A = \sin B \) is: \[ A = n\pi + (-1)^n B \] Here, let \( A = x + \frac{\pi}{3} \) and \( B = \frac{\pi}{6} \): \[ x + \frac{\pi}{3} = n\pi + (-1)^n \frac{\pi}{6} \] ### Step 6: Isolate \( x \) Rearranging gives: \[ x = n\pi + (-1)^n \frac{\pi}{6} - \frac{\pi}{3} \] This simplifies to: \[ x = n\pi + (-1)^n \frac{\pi}{6} - \frac{2\pi}{6} \] \[ x = n\pi + (-1)^n \frac{\pi}{6} - \frac{\pi}{3} \] \[ x = n\pi + \left((-1)^n - 2\right) \frac{\pi}{6} \] ### Step 7: Find Specific Solutions Now we need to find specific values of \( n \) such that \( -2\pi < x \leq 2\pi \). 1. **For \( n = 0 \)**: \[ x = 0 + (-1)^0 \frac{\pi}{6} - \frac{\pi}{3} = \frac{\pi}{6} - \frac{2\pi}{6} = -\frac{\pi}{6} \] 2. **For \( n = 1 \)**: \[ x = 1\pi + (-1)^1 \frac{\pi}{6} - \frac{\pi}{3} = \pi - \frac{\pi}{6} - \frac{2\pi}{6} = \pi - \frac{3\pi}{6} = \pi - \frac{\pi}{2} = \frac{\pi}{2} \] 3. **For \( n = 2 \)**: \[ x = 2\pi + (-1)^2 \frac{\pi}{6} - \frac{\pi}{3} = 2\pi + \frac{\pi}{6} - \frac{2\pi}{6} = 2\pi - \frac{\pi}{6} = \frac{12\pi}{6} - \frac{\pi}{6} = \frac{11\pi}{6} \] 4. **For \( n = -1 \)**: \[ x = -\pi + (-1)^{-1} \frac{\pi}{6} - \frac{\pi}{3} = -\pi - \frac{\pi}{6} - \frac{2\pi}{6} = -\pi - \frac{3\pi}{6} = -\pi - \frac{\pi}{2} = -\frac{3\pi}{2} \] 5. **For \( n = -2 \)**: \[ x = -2\pi + (-1)^{-2} \frac{\pi}{6} - \frac{\pi}{3} = -2\pi + \frac{\pi}{6} - \frac{2\pi}{6} = -2\pi - \frac{\pi}{3} = -\frac{12\pi}{6} - \frac{2\pi}{6} = -\frac{14\pi}{6} \quad \text{(not in range)} \] ### Step 8: Compile Solutions The valid solutions in the interval \( -2\pi < x \leq 2\pi \) are: \[ x = -\frac{\pi}{6}, \quad x = \frac{\pi}{2}, \quad x = \frac{11\pi}{6}, \quad x = -\frac{3\pi}{2} \] ### Final Answer The solutions are: \[ x = -\frac{3\pi}{2}, -\frac{\pi}{6}, \frac{\pi}{2}, \frac{11\pi}{6} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise EXERCISE 6|33 Videos
  • TRIGONOMETRIC FUNCTION

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |44 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Chapter test |8 Videos

Similar Questions

Explore conceptually related problems

Solve the equation sqrt3cos x + sin x = sqrt2 .

Solve the equation sqrt3cos x + sin x = sqrt2 .

Solve the equation ( sin x + cos x )^(1+ sin 2x )=2 , when -pi le x le pi .

Solve the equation for 0 le x le 2pi. sin x cos x =0

The number of real solution of the equation sqrt(1 + cos 2x) = sqrt2 sin^(-1) (sin x), -pi le x le pi , is

The number of real solution of the equation sqrt(1 + cos 2x) = sqrt2 sin^(-1) (sin x), -pi le x le pi , is

Solve the equation for 0 le x le 2pi. 2 sin x-1 =0

Solve sin 3x = cos 2x. (0 lt x lt 2pi).

Solve the equation 2 (cos x+cos 2x)+sin 2x (1+2 cos x)=2 sin x for x in [-pi, pi] .

Solve the equation 2(cos x+cos2x)+sin2x(1+2cos x)=2sinx for (-pilt=xlt=pi)