Home
Class 11
MATHS
In DeltaABC, In a triangle ABC, angleC...

In `DeltaABC`,
In a triangle ABC, `angleC=60^(@) and angleA=75^(@)`. If D is a point on AC such that the area of the `DeltaBAD` is `sqrt(3)` times the area of the `DeltaBCD`, find the `angleABD`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the reasoning presented in the video transcript. ### Step 1: Understand the given information We have a triangle \( \Delta ABC \) with: - \( \angle C = 60^\circ \) - \( \angle A = 75^\circ \) We need to find \( \angle ABD \) given that the area of triangle \( \Delta BAD \) is \( \sqrt{3} \) times the area of triangle \( \Delta BCD \). ### Step 2: Set up the area relationship Let the area of triangle \( \Delta BCD \) be \( S \). Then, the area of triangle \( \Delta BAD \) is \( \sqrt{3} S \). ### Step 3: Use the area formula The area of a triangle can be expressed as: \[ \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \] For triangle \( \Delta BAD \): \[ \text{Area of } \Delta BAD = \frac{1}{2} \times AD \times BE \] For triangle \( \Delta BCD \): \[ \text{Area of } \Delta BCD = \frac{1}{2} \times CD \times BE \] ### Step 4: Set up the equation From the area relationship: \[ \frac{1}{2} \times AD \times BE = \sqrt{3} \times \left( \frac{1}{2} \times CD \times BE \right) \] We can cancel \( \frac{1}{2} \) and \( BE \) (assuming \( BE \neq 0 \)): \[ AD = \sqrt{3} \times CD \] ### Step 5: Express \( AD \) and \( CD \) in terms of a variable Let \( CD = x \). Then: \[ AD = \sqrt{3} x \] ### Step 6: Use the section formula Since \( D \) divides \( AC \) in the ratio \( AD : CD = \sqrt{3} : 1 \), we can apply the section formula. The total length \( AC \) can be expressed as: \[ AC = AD + CD = \sqrt{3}x + x = (\sqrt{3} + 1)x \] ### Step 7: Apply the MN theorem According to the MN theorem, we have: \[ \frac{AD}{CD} = \frac{\sqrt{3}}{1} \] This leads to: \[ \cot \theta = \frac{1 \cdot \cot A - \sqrt{3} \cdot \cot C}{\sqrt{3} + 1} \] Where \( \cot A = \cot 75^\circ \) and \( \cot C = \cot 60^\circ \). ### Step 8: Calculate \( \cot 75^\circ \) and \( \cot 60^\circ \) Using known values: - \( \cot 60^\circ = \frac{1}{\sqrt{3}} \) - \( \cot 75^\circ = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \) ### Step 9: Substitute and simplify Substituting these values into the equation: \[ \cot \theta = \frac{1 \cdot \frac{\sqrt{3} - 1}{\sqrt{3} + 1} - \sqrt{3} \cdot \frac{1}{\sqrt{3}}}{\sqrt{3} + 1} \] This simplifies to: \[ \cot \theta = \frac{\sqrt{3} - 1 - 1}{\sqrt{3} + 1} = \frac{\sqrt{3} - 2}{\sqrt{3} + 1} \] ### Step 10: Find \( \theta \) After further simplification, we find that \( \theta = 105^\circ \). ### Step 11: Find \( \angle ABD \) Using the exterior angle property: \[ \angle ADB = 105^\circ \] Thus: \[ \angle ABD = \angle ADB - \angle A = 105^\circ - 75^\circ = 30^\circ \] ### Final Answer \[ \angle ABD = 30^\circ \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLE

    ICSE|Exercise MORE SOLVED EXAMPLES|8 Videos
  • PROBABILITY

    ICSE|Exercise CHAPTER TEST |6 Videos
  • QUADRATIC EQUATIONS

    ICSE|Exercise CHAPTER TEST|24 Videos

Similar Questions

Explore conceptually related problems

In a "DeltaA B C","\ "/_"C"=60"\ "&\ /_A=75. If D is a point on A C such that area of the "DeltaB A D" is sqrt(3) times the area of the "DeltaB C D", then the /_"A B D"= 60^0 (b) 30^0 (c) 90^0 (d) none of these

In triangleABC, angleB=60^(@) and angleC = 75^(@) . If D is a point on side BC such that ("ar"(triangleABD))/("ar"(triangleACD))=1/sqrt(3) find angleBAD

In a DeltaABC , if angleA=45^(@). angleB=60^(@) and angleC=75^(@) , find the ratio of its sides.

In DeltaABC, angleA-angleB=16^(@) and angleC-angleA=34^(@)=34^(@) , find all angles of the triangle

In DeltaABC, angleA=x+15^(@),angleB=x and angleC=2x-35^(@) find, each angle of the triangle.

ABCD is a parallelogram. Find the ratio of the area of Delta ABC to the area of the parallelogram ABCD.

In triangle ABC, AB=6,AC=3sqrt6,angleB=60^@" and " angle C=45^(@) . Find length of side BC.

In triangle ABC, D is a point in side BC such that 2BD=3DC . Prove that the area of triangle ABD = (3)/(5)xx "Area of" DeltaABC

In DeltaABC,b=2sqrt(3), c=3sqrt(2), angleC=60^(@) , evaluate angleA .

ABC is a triangle in which AB = AC and D is a point on AC such that BC^2 = AC xx CD .Prove that BD = BC .

ICSE-PROPERTIES OF TRIANGLE-EXERCISE 7
  1. In DeltaABC, If the two angles of a triangle are 30^(@) and 45^(@) a...

    Text Solution

    |

  2. In DeltaABC, If in a DeltaABC, a = 6, b = 3 and cos(A-B)=4/5, find i...

    Text Solution

    |

  3. In DeltaABC, In a triangle ABC, angleC=60^(@) and angleA=75^(@). If ...

    Text Solution

    |

  4. In any DeltaABC, prove that (sinA)/(sin(A+B))=a/c

    Text Solution

    |

  5. In any DeltaABC, prove that (a-b)/(a+b)=(tan""1/2(A-B))/(tan""1/2(A+...

    Text Solution

    |

  6. In any DeltaABC, prove that ac""cosB-bc""cosA=a^(2)-b^(2)

    Text Solution

    |

  7. In any DeltaABC, prove that (sin(A-B))/(sin(A+B))=(a^(2)-b^(2))/c^(2...

    Text Solution

    |

  8. In any DeltaABC, prove that a(sinB-sinC)+b(sinC-sinA)+c(sinA-sinB)=0

    Text Solution

    |

  9. In any DeltaABC, prove that acos(A+B+C)-bcos(B+A)-c""cos(A+C)=0

    Text Solution

    |

  10. In any DeltaABC, prove that a(cosC-cosB)=2(b-c)cos^(2)""1/2A

    Text Solution

    |

  11. In any DeltaABC, prove that asin""1/2(B-C)=(b-c)cos""1/2A

    Text Solution

    |

  12. In any DeltaABC, prove that asin(A/2+B)=(b+c)sin""A/2

    Text Solution

    |

  13. In any DeltaABC, prove that c^(2)=(a-b)^(2)cos^(2)""1/2C+(a+b)^(2)si...

    Text Solution

    |

  14. In any DeltaABC, prove that asin(B-C)+bsin(C-A)+csin(A-B)=0

    Text Solution

    |

  15. In any DeltaABC, prove that (cos2A)/a^(2)-(cos2B)/b^(2)=1/a^(2)-1/b^...

    Text Solution

    |

  16. In any DeltaABC, prove that (1+cos(A-B)cosC)/(1+cos(A-C)cosB)=(a^(2)...

    Text Solution

    |

  17. In any DeltaABC, prove that (b^(2)-c^(2))cotA+(c^(2)-a^(2))cotB+(a^(...

    Text Solution

    |

  18. In any DeltaABC, prove that a^(3)sin(B-C)cosec^(2)A+b^(3)sin(C-A)cos...

    Text Solution

    |

  19. In any DeltaABC, prove that a^(3)cos(B-C)+b^(3)cos(C-A)+c^(3)cos(A-B)...

    Text Solution

    |

  20. In a DeltaABC, if (2cosA)/a+(cosB)/b+(2cosC)/c=a/(bc)+b/(ca), prove th...

    Text Solution

    |