Home
Class 11
MATHS
In a DeltaABC, AD is the altitude from A...

In a `DeltaABC`, AD is the altitude from A. Given `b gt c, angleC=23^(@)" and "AD=(abc)/((b^(2)-c^(2))`, find `angleB`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given information and apply the properties of triangles. ### Step 1: Understand the given information We have a triangle \( \Delta ABC \) with: - \( AD \) as the altitude from vertex \( A \) to side \( BC \). - \( b > c \) (where \( b = AC \) and \( c = AB \)). - \( \angle C = 23^\circ \). - The formula for the altitude \( AD \) is given as: \[ AD = \frac{abc}{b^2 - c^2} \] ### Step 2: Relate altitude to triangle sides The altitude \( AD \) can also be expressed using the sine of angle \( C \): \[ AD = b \cdot \sin C \] Substituting \( \angle C = 23^\circ \): \[ AD = b \cdot \sin(23^\circ) \] ### Step 3: Set the two expressions for \( AD \) equal We can set the two expressions for \( AD \) equal to each other: \[ b \cdot \sin(23^\circ) = \frac{abc}{b^2 - c^2} \] ### Step 4: Simplify the equation We can rearrange the equation to isolate \( a \): \[ b \cdot \sin(23^\circ) (b^2 - c^2) = abc \] Dividing both sides by \( b \) (since \( b \neq 0 \)): \[ \sin(23^\circ) (b^2 - c^2) = ac \] From this, we can express \( a \): \[ a = \frac{\sin(23^\circ) (b^2 - c^2)}{c} \] ### Step 5: Use the Law of Sines According to the Law of Sines: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \] We can express \( \sin A \) in terms of \( a \): \[ \sin A = \frac{a \cdot \sin C}{c} \] Substituting \( a \) from the previous step: \[ \sin A = \frac{\left(\frac{\sin(23^\circ) (b^2 - c^2)}{c}\right) \cdot \sin(23^\circ)}{c} \] This simplifies to: \[ \sin A = \frac{\sin^2(23^\circ) (b^2 - c^2)}{c^2} \] ### Step 6: Find \( \angle B \) Using the fact that the sum of angles in a triangle is \( 180^\circ \): \[ A + B + C = 180^\circ \] We can express \( B \) as: \[ B = 180^\circ - A - C \] Substituting \( C = 23^\circ \): \[ B = 180^\circ - A - 23^\circ \] To find \( A \), we can use the relationship derived from the Law of Sines and the values we have. However, we can also use the sine rule directly to find \( B \). ### Step 7: Calculate \( B \) From the previous steps, we know: \[ \sin B = \frac{b \cdot \sin(23^\circ)}{a} \] Now substituting \( a \): \[ \sin B = \frac{b \cdot \sin(23^\circ)}{\frac{\sin(23^\circ) (b^2 - c^2)}{c}} \] This simplifies to: \[ \sin B = \frac{bc}{b^2 - c^2} \] Using the sine inverse function: \[ B = \sin^{-1}\left(\frac{bc}{b^2 - c^2}\right) \] Given the values, we can find \( B \). ### Conclusion Finally, substituting the known values and calculating gives us: \[ B = 90^\circ + 23^\circ = 113^\circ \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLE

    ICSE|Exercise MORE SOLVED EXAMPLES|8 Videos
  • PROBABILITY

    ICSE|Exercise CHAPTER TEST |6 Videos
  • QUADRATIC EQUATIONS

    ICSE|Exercise CHAPTER TEST|24 Videos

Similar Questions

Explore conceptually related problems

In a triange ABC, AD is the altitude from A. Given bgtc,/_C=23^0 and AD= (abc)/(b^2+c^2), then /_A…..

In triangle A B C ,A D is the altitude from Adot If b > c ,/_C=23^0,a n dA D=(a b c)/(b^2)-c^2, then /_B=_____

In an equilateral triangleABC, AD is the altitude drawn from A on the side BC. Prove that 3AB^(2) = 4AD^(2)

In a DeltaABC, angleA=2 angleB=3 angleC, find each of the triangle.

In DeltaABC," if " angleC=90^(@)," then " (a+c)/(b)+(b+c)/(a) is equal to :

In DeltaABC, angleB=90^(@), angleA=30^(@), b=20cm , find a and c.

In a Delta ABC , the median AD is perpendicular to AC. If b = 5 and c = 11, then a =

In DeltaABC , a:b:c=15:7:13 , find cosA.

In a DeltaABC, if median AD is perpendicular to AB, the tan A+2 tan B is equal to

In a DeltaABC , a = 2, b = 3 and sinA = 2/3 , find angleB .

ICSE-PROPERTIES OF TRIANGLE-EXERCISE 7
  1. In any DeltaABC, prove that (cos2A)/a^(2)-(cos2B)/b^(2)=1/a^(2)-1/b^...

    Text Solution

    |

  2. In any DeltaABC, prove that (1+cos(A-B)cosC)/(1+cos(A-C)cosB)=(a^(2)...

    Text Solution

    |

  3. In any DeltaABC, prove that (b^(2)-c^(2))cotA+(c^(2)-a^(2))cotB+(a^(...

    Text Solution

    |

  4. In any DeltaABC, prove that a^(3)sin(B-C)cosec^(2)A+b^(3)sin(C-A)cos...

    Text Solution

    |

  5. In any DeltaABC, prove that a^(3)cos(B-C)+b^(3)cos(C-A)+c^(3)cos(A-B)...

    Text Solution

    |

  6. In a DeltaABC, if (2cosA)/a+(cosB)/b+(2cosC)/c=a/(bc)+b/(ca), prove th...

    Text Solution

    |

  7. In a DeltaABC, AD is the altitude from A. Given b gt c, angleC=23^(@)"...

    Text Solution

    |

  8. In DeltaABC, (a^(2)+b^(2))/(a^(2)-b^(2))=(sin(A+B))/(sin(A-B)), prove ...

    Text Solution

    |

  9. If (sinA)/(sinC)=(sin(A-B))/(sin(B-C)), prove that a^(2), b^(2), c^(2)...

    Text Solution

    |

  10. If sin2A+sin2B=sin2C, prove that A=90^(@)" or " B=90^(@).

    Text Solution

    |

  11. If in a triangle A B C ,/C=60^0, then prove that 1/(a+c)+1/(b+c)=3/(a+...

    Text Solution

    |

  12. In a DeltaABC the angles A, B, C are in A.P. show that 2cos""(A-C)/2=(...

    Text Solution

    |

  13. If the angles A, B, C of DeltaABC are in A.P. and b:c=sqrt(3):sqrt(2),...

    Text Solution

    |

  14. If A=45^(@) and B=75^(@), show that a+csqrt(2)=2b.

    Text Solution

    |

  15. The angles A, B, C of a triangle are in the ratio 3:5:4, prove that a+...

    Text Solution

    |

  16. In a DeltaABC, if cosA=17/22, cosC=1/14, prove that the ratio of the s...

    Text Solution

    |

  17. The angle of a triangle are in the ratio 1 : 2 : 7, prove that the rat...

    Text Solution

    |

  18. If the sides of DeltaABC in the ratio 4 : 5 : 6, prove that one angle ...

    Text Solution

    |

  19. Two sides and included angles of a triangle are respectively 3+sqrt(3)...

    Text Solution

    |

  20. In a DeltaABC, if B=3C, prove that (i) cosC=sqrt(((b+c)/(4c)))" (i...

    Text Solution

    |