Home
Class 11
MATHS
Solve the equations: Q. sqrt(x^(2)-3x)...

Solve the equations:
Q. `sqrt(x^(2)-3x)=4x^(2)-12x-3`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{x^2 - 3x} = 4x^2 - 12x - 3 \), we will follow these steps: ### Step 1: Square both sides We start by squaring both sides to eliminate the square root: \[ \left(\sqrt{x^2 - 3x}\right)^2 = \left(4x^2 - 12x - 3\right)^2 \] This simplifies to: \[ x^2 - 3x = (4x^2 - 12x - 3)^2 \] ### Step 2: Set up the equation Next, we will rearrange the equation to set it to zero: \[ x^2 - 3x - (4x^2 - 12x - 3)^2 = 0 \] ### Step 3: Substitute \( y \) Let \( y = x^2 - 3x \). Then we can rewrite the equation as: \[ \sqrt{y} = 4y - 3 \] ### Step 4: Square both sides again Squaring both sides again gives: \[ y = (4y - 3)^2 \] ### Step 5: Expand the right-hand side Expanding the right-hand side: \[ y = 16y^2 - 24y + 9 \] ### Step 6: Rearrange to form a quadratic equation Rearranging gives us: \[ 16y^2 - 25y + 9 = 0 \] ### Step 7: Factor the quadratic equation Now we will factor the quadratic equation: \[ (16y - 9)(y - 1) = 0 \] ### Step 8: Solve for \( y \) Setting each factor to zero gives: 1. \( 16y - 9 = 0 \) which gives \( y = \frac{9}{16} \) 2. \( y - 1 = 0 \) which gives \( y = 1 \) ### Step 9: Substitute back to find \( x \) Recall that \( y = x^2 - 3x \). We will substitute back to find \( x \): 1. For \( y = 1 \): \[ x^2 - 3x - 1 = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{3 \pm \sqrt{9 + 4}}{2} = \frac{3 \pm \sqrt{13}}{2} \] 2. For \( y = \frac{9}{16} \): \[ x^2 - 3x - \frac{9}{16} = 0 \] Again using the quadratic formula: \[ x = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot \left(-\frac{9}{16}\right)}}{2 \cdot 1} = \frac{3 \pm \sqrt{9 + \frac{36}{16}}}{2} = \frac{3 \pm \sqrt{\frac{144}{16}}}{2} = \frac{3 \pm 3}{2} \] This gives \( x = 3 \) or \( x = 0 \). ### Step 10: Final solutions Thus, the solutions for \( x \) are: \[ x = \frac{3 + \sqrt{13}}{2}, \quad x = \frac{3 - \sqrt{13}}{2}, \quad x = 3, \quad x = 0 \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    ICSE|Exercise EXERCISE 10 (c)|30 Videos
  • QUADRATIC EQUATIONS

    ICSE|Exercise EXERCISE 10 (d)|14 Videos
  • QUADRATIC EQUATIONS

    ICSE|Exercise EXERCISE 10 (a)|11 Videos
  • PROPERTIES OF TRIANGLE

    ICSE|Exercise EXERCISE 7|38 Videos
  • RELATION AND FUNCTIONS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS (Choose the correct answer from the given four options in questions)|32 Videos

Similar Questions

Explore conceptually related problems

Solve the equation sqrt((6-4x-x^(2)))=x+4

Solve the equations: Q. sqrt((x^(2)+2)/(x^(2)-2))+6sqrt((x^(2)-2)/(x^(2)+2))=5 .

Solve the inequation sqrt((-x^(2)+4x-3))gt6-2x

Solve the equation sqrt(x^(2)+12y)+ sqrt(y^(2)+12x)=33,x+y=23.

Solve the equation sqrt((6-x))(3^(x^(2)-7.2x+3.9)-9sqrt(3))=0

Solve the equation : 3x^2-4x+(20)/3=0

Solve the equation : 3x^2-4x+(20)/3=0

Solve the equation 3sqrt((x+3))-sqrt((x-2))=7

Solve the equation sqrt(3)x^(2)-sqrt(2)x+3sqrt(3)=0

Solve the equation x^(2)-4x+[x]+3=0