Home
Class 11
MATHS
Solve the equations: Q. sqrt((2x^(2)+1...

Solve the equations:
Q. `sqrt((2x^(2)+1)/(x^(2)-1))+6sqrt((x^(2)-1)/(2x^(2)+1))=5`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sqrt{\frac{2x^2 + 1}{x^2 - 1}} + 6\sqrt{\frac{x^2 - 1}{2x^2 + 1}} = 5, \] we will follow these steps: ### Step 1: Substitute for Simplification Let \[ y = \sqrt{\frac{2x^2 + 1}{x^2 - 1}}. \] Then, \[ \sqrt{\frac{x^2 - 1}{2x^2 + 1}} = \frac{1}{y}. \] Substituting these into the original equation gives: \[ y + 6 \cdot \frac{1}{y} = 5. \] ### Step 2: Clear the Fraction Multiply through by \(y\) to eliminate the fraction: \[ y^2 + 6 = 5y. \] ### Step 3: Rearrange into Standard Quadratic Form Rearranging the equation yields: \[ y^2 - 5y + 6 = 0. \] ### Step 4: Factor the Quadratic Now, we factor the quadratic equation: \[ (y - 2)(y - 3) = 0. \] ### Step 5: Solve for \(y\) Setting each factor to zero gives: \[ y - 2 = 0 \quad \Rightarrow \quad y = 2, \] \[ y - 3 = 0 \quad \Rightarrow \quad y = 3. \] ### Step 6: Substitute Back for \(x\) Recall that \[ y = \sqrt{\frac{2x^2 + 1}{x^2 - 1}}. \] #### Case 1: \(y = 2\) \[ 2 = \sqrt{\frac{2x^2 + 1}{x^2 - 1}}. \] Squaring both sides: \[ 4 = \frac{2x^2 + 1}{x^2 - 1}. \] Cross-multiplying gives: \[ 4(x^2 - 1) = 2x^2 + 1. \] Expanding and rearranging: \[ 4x^2 - 4 = 2x^2 + 1 \quad \Rightarrow \quad 2x^2 - 5 = 0. \] Solving for \(x^2\): \[ x^2 = \frac{5}{2} \quad \Rightarrow \quad x = \pm \sqrt{\frac{5}{2}}. \] #### Case 2: \(y = 3\) \[ 3 = \sqrt{\frac{2x^2 + 1}{x^2 - 1}}. \] Squaring both sides: \[ 9 = \frac{2x^2 + 1}{x^2 - 1}. \] Cross-multiplying gives: \[ 9(x^2 - 1) = 2x^2 + 1. \] Expanding and rearranging: \[ 9x^2 - 9 = 2x^2 + 1 \quad \Rightarrow \quad 7x^2 - 10 = 0. \] Solving for \(x^2\): \[ x^2 = \frac{10}{7} \quad \Rightarrow \quad x = \pm \sqrt{\frac{10}{7}}. \] ### Final Solutions Thus, the solutions for \(x\) are: \[ x = \sqrt{\frac{5}{2}}, \quad x = -\sqrt{\frac{5}{2}}, \quad x = \sqrt{\frac{10}{7}}, \quad x = -\sqrt{\frac{10}{7}}. \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    ICSE|Exercise EXERCISE 10 (c)|30 Videos
  • QUADRATIC EQUATIONS

    ICSE|Exercise EXERCISE 10 (d)|14 Videos
  • QUADRATIC EQUATIONS

    ICSE|Exercise EXERCISE 10 (a)|11 Videos
  • PROPERTIES OF TRIANGLE

    ICSE|Exercise EXERCISE 7|38 Videos
  • RELATION AND FUNCTIONS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS (Choose the correct answer from the given four options in questions)|32 Videos

Similar Questions

Explore conceptually related problems

Solve the equations: Q. sqrt((x^(2)+2)/(x^(2)-2))+6sqrt((x^(2)-2)/(x^(2)+2))=5 .

Solve the equation: x^2 + x/sqrt2 + 1 =0

Solve the equation: 2x^(2)-6sqrt(2)x-1=0

Solve the equation: x^2+x+1/(sqrt(2))= 0

Solve the equation: tan^(-1)sqrt(x^2+x)+sin^(-1)sqrt(x^2+x+1)=pi/2

Solve the equation x^(2)+x+(1)/(sqrt(3))=0

Solve the equation log_((x^(3)+6))(x^(2)-1)=log_((2x^(2)+5x))(x^(2)-1)

Solve the equation sqrt(2x-1)+sqrt(3x-2)=sqrt(4x-3)+sqrt(5x-4).

Solve the equation (2+sqrt(3))^(x^(2)-2x+1)+(2-sqrt(3))^(x^(2)-2x-1)=101/(10(2-sqrt(3))

Solve (x^2-4)sqrt(x^2-1)<0.