Home
Class 11
MATHS
Solve graphically and compare your answe...

Solve graphically and compare your answer with algebraic solution either by factorization or formula method:
(i) `y=x^(2)-5x+6`
(ii) `y=-x^(2)+2x+3`
(iii) `y=x^(2)-4x+4`
(iv) `y=x^(2)-x-6`
(v) `y=x^(2)-6x+9`
(vi) `y=-x^(2)-x+12`
(vii) `y=x^(2)-4x+5=0`
(viii) `y=x^(2)+2x+2=0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the quadratic equations graphically and compare the results with algebraic solutions, we will follow these steps for each equation: ### Step-by-Step Solution 1. **Equation (i): \(y = x^2 - 5x + 6\)** **Algebraic Solution:** - Factor the equation: \[ y = x^2 - 5x + 6 = (x - 2)(x - 3) \] - Set \(y = 0\): \[ (x - 2)(x - 3) = 0 \implies x = 2 \text{ or } x = 3 \] - Roots: \(x = 2\) and \(x = 3\). **Graphical Solution:** - Plot the parabola based on the factored form. - The parabola intersects the x-axis at \(x = 2\) and \(x = 3\). 2. **Equation (ii): \(y = -x^2 + 2x + 3\)** **Algebraic Solution:** - Factor the equation: \[ y = -x^2 + 2x + 3 = -(x^2 - 2x - 3) = -(x - 3)(x + 1) \] - Set \(y = 0\): \[ -(x - 3)(x + 1) = 0 \implies x = 3 \text{ or } x = -1 \] - Roots: \(x = 3\) and \(x = -1\). **Graphical Solution:** - The parabola opens downwards and intersects the x-axis at \(x = 3\) and \(x = -1\). 3. **Equation (iii): \(y = x^2 - 4x + 4\)** **Algebraic Solution:** - Factor the equation: \[ y = (x - 2)^2 \] - Set \(y = 0\): \[ (x - 2)^2 = 0 \implies x = 2 \] - Root: \(x = 2\) (double root). **Graphical Solution:** - The parabola touches the x-axis at \(x = 2\). 4. **Equation (iv): \(y = x^2 - x - 6\)** **Algebraic Solution:** - Factor the equation: \[ y = (x - 3)(x + 2) \] - Set \(y = 0\): \[ (x - 3)(x + 2) = 0 \implies x = 3 \text{ or } x = -2 \] - Roots: \(x = 3\) and \(x = -2\). **Graphical Solution:** - The parabola intersects the x-axis at \(x = 3\) and \(x = -2\). 5. **Equation (v): \(y = x^2 - 6x + 9\)** **Algebraic Solution:** - Factor the equation: \[ y = (x - 3)^2 \] - Set \(y = 0\): \[ (x - 3)^2 = 0 \implies x = 3 \] - Root: \(x = 3\) (double root). **Graphical Solution:** - The parabola touches the x-axis at \(x = 3\). 6. **Equation (vi): \(y = -x^2 - x + 12\)** **Algebraic Solution:** - Factor the equation: \[ y = -1(x^2 + x - 12) = -1(x - 3)(x + 4) \] - Set \(y = 0\): \[ -(x - 3)(x + 4) = 0 \implies x = 3 \text{ or } x = -4 \] - Roots: \(x = 3\) and \(x = -4\). **Graphical Solution:** - The parabola opens downwards and intersects the x-axis at \(x = 3\) and \(x = -4\). 7. **Equation (vii): \(y = x^2 - 4x + 5\)** **Algebraic Solution:** - Use the quadratic formula: \[ x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 5}}{2 \cdot 1} = \frac{4 \pm \sqrt{16 - 20}}{2} = \frac{4 \pm \sqrt{-4}}{2} \] - Roots are imaginary. **Graphical Solution:** - The parabola does not intersect the x-axis. 8. **Equation (viii): \(y = x^2 + 2x + 2\)** **Algebraic Solution:** - Use the quadratic formula: \[ x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1} = \frac{-2 \pm \sqrt{4 - 8}}{2} = \frac{-2 \pm \sqrt{-4}}{2} \] - Roots are imaginary. **Graphical Solution:** - The parabola does not intersect the x-axis.
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    ICSE|Exercise EXERCISE 10 (f)|9 Videos
  • QUADRATIC EQUATIONS

    ICSE|Exercise CHAPTER TEST|24 Videos
  • QUADRATIC EQUATIONS

    ICSE|Exercise EXERCISE 10 (d)|14 Videos
  • PROPERTIES OF TRIANGLE

    ICSE|Exercise EXERCISE 7|38 Videos
  • RELATION AND FUNCTIONS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS (Choose the correct answer from the given four options in questions)|32 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) for the following : (i) y=x^(7//2) (ii) y=x^(-3) (iii) y=x (iv) y=x^(5)+x^(3)+4x^(1//2)+7 (v) y=5x^(4)+6x^(3//2)+9x (vi) y=ax^(2)+bx+C (Vii) y=3x^(5)-3x-1/x

Find differentiation of y w.r.t x. (i) y=x^(2)-6x (ii) y=x^(5)+2e^(x) (iii) y=4 ln x +cos x

Find dervatives of the following functions: (i) y=2x^(3) , (ii) y=4/x , (iii) y=3e^(x) , (iv) y=6 ln x , (v) y=5 sin x

Find the degree of each of the following polynomials : (i) 3x^(4)-x^(2)+8 " " (ii) y^(2)-5y+7 " " (iii) 3x+4 " " (iv) 3 (v) x-2x^(2)+5x^(7) " " (vi) 2y^(2)-5y^(6)+1 " "(vii) x^(3)-1 " " (viii) 3x+5x^(5)+1

Add : x^(2) y^(2) , 2x^(2)y^(2) , - 4x^(2)y^(2) , 6x^(2)y^(2)

Find the centre and radius of each of the circles whose equations are given below: (i) 3x^(2)+3y^(2)-5x-6y+4=0 (ii) 3x^(2)+3y^(2)+6x-12-1=0 (iii) x^(2)+y^(2)+6x+8y-96=0 (iv) 2x^(2)+2y^(2)-4x+6y-3=0 (v) 2x^(2)+2y^(2)-3x+2y-1=0 (vi) x^(2)+y^(2)+2x-4y-4=0 (vii) x^(2)+y^(2)-4x-8y-41=0

Factorise the following : (i) 9a^(2)-b^(2) " " (ii) 81x^(3)-x " " (iii) x^(3)-49xy^(2) " " (iv) a^(2)-(b-c)^(2) (v) (x-y)^(3)-x+y " " (vi)x^(2)y^(2)+1-x^(2)-y^(2) " " (vii) 25(a+b)^(2)-49(a-b)^(2) " " (viii) xy^(5)-x^(5)y (ix) x^(8)-256 " " (x) x^(8)-81y^(8)

Find the centre and radius of each of the following circle : (i) x^(2)+y^(2)+4x-4y+1=0 (ii) 2x^(2)+2y^(2)-6x+6y+1=0 (iii) 2x^(2)+2y^(2)=3k(x+k) (iv) 3x^(2)+3y^(2)-5x-6y+4=0 (v) x^(2)+y^(2)-2ax-2by+a^(2)=0

Find the following products: (i) (z^2+2)(z^2-3) (ii) (3x-4y)(2x-4y) (iii) (3x^2-4x y)(3x^2-3x y) (iv) (x+1/5)(x+5)

Divide: x^2-5x+6b y\ x-3 (ii) a x^2-a y^2b y\ a x+a y