Home
Class 11
MATHS
Expand (3x-2y)^(4)....

Expand `(3x-2y)^(4)`.

Text Solution

AI Generated Solution

The correct Answer is:
To expand \((3x - 2y)^4\) using the Binomial Theorem, we follow these steps: ### Step 1: Identify \(a\), \(b\), and \(n\) In the expression \((3x - 2y)^4\): - Let \(a = 3x\) - Let \(b = -2y\) - Let \(n = 4\) ### Step 2: Apply the Binomial Theorem The Binomial Theorem states that: \[ (a + b)^n = \sum_{r=0}^{n} \binom{n}{r} a^{n-r} b^r \] For our case, we will use: \[ (3x - 2y)^4 = \sum_{r=0}^{4} \binom{4}{r} (3x)^{4-r} (-2y)^r \] ### Step 3: Calculate each term in the expansion We will calculate each term for \(r = 0\) to \(r = 4\): 1. **For \(r = 0\)**: \[ \binom{4}{0} (3x)^{4} (-2y)^{0} = 1 \cdot (3x)^4 \cdot 1 = 81x^4 \] 2. **For \(r = 1\)**: \[ \binom{4}{1} (3x)^{3} (-2y)^{1} = 4 \cdot (3x)^3 \cdot (-2y) = 4 \cdot 27x^3 \cdot (-2y) = -216x^3y \] 3. **For \(r = 2\)**: \[ \binom{4}{2} (3x)^{2} (-2y)^{2} = 6 \cdot (3x)^2 \cdot (4y^2) = 6 \cdot 9x^2 \cdot 4y^2 = 216x^2y^2 \] 4. **For \(r = 3\)**: \[ \binom{4}{3} (3x)^{1} (-2y)^{3} = 4 \cdot (3x) \cdot (-8y^3) = 4 \cdot 3x \cdot (-8y^3) = -96xy^3 \] 5. **For \(r = 4\)**: \[ \binom{4}{4} (3x)^{0} (-2y)^{4} = 1 \cdot 1 \cdot 16y^4 = 16y^4 \] ### Step 4: Combine all the terms Now, we combine all the terms we calculated: \[ (3x - 2y)^4 = 81x^4 - 216x^3y + 216x^2y^2 - 96xy^3 + 16y^4 \] ### Final Answer Thus, the expansion of \((3x - 2y)^4\) is: \[ 81x^4 - 216x^3y + 216x^2y^2 - 96xy^3 + 16y^4 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Expand: (x-2y+2)^(2)

Expand : (3x - 2y)^3

By using pascles's triangle expand (2x+3y)^(4) .

Expand: (3x-2y + 5z)^(2)

Expand: (5x-3y-2)^(2)

Expand (y+x)^2

Expand (x+y)^(4)-(x-y)^(4) . Hence find the value of (3+sqrt(5))^(4) -(3-sqrt(5))^(4) .

Expand: (x+y- z)^(2)

Expand (3x^2- x/2)^5

Expand (2x + 5y)^(5)