Home
Class 11
MATHS
Expand (x+(1)/(x) )^(6). ( x ne 0)...

Expand `(x+(1)/(x) )^(6). ( x ne 0)`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((x + \frac{1}{x})^6\) using the Binomial Theorem, we follow these steps: ### Step 1: Identify \(a\), \(b\), and \(n\) In the expression \((x + \frac{1}{x})^6\), we identify: - \(a = x\) - \(b = \frac{1}{x}\) - \(n = 6\) ### Step 2: Apply the Binomial Theorem According to the Binomial Theorem, the expansion of \((a + b)^n\) is given by: \[ \sum_{r=0}^{n} \binom{n}{r} a^{n-r} b^r \] Thus, we can write: \[ (x + \frac{1}{x})^6 = \sum_{r=0}^{6} \binom{6}{r} x^{6-r} \left(\frac{1}{x}\right)^r \] ### Step 3: Simplify Each Term Now we will calculate each term of the expansion for \(r\) from 0 to 6: 1. For \(r = 0\): \[ \binom{6}{0} x^{6-0} \left(\frac{1}{x}\right)^0 = 1 \cdot x^6 \cdot 1 = x^6 \] 2. For \(r = 1\): \[ \binom{6}{1} x^{6-1} \left(\frac{1}{x}\right)^1 = 6 \cdot x^5 \cdot \frac{1}{x} = 6x^4 \] 3. For \(r = 2\): \[ \binom{6}{2} x^{6-2} \left(\frac{1}{x}\right)^2 = 15 \cdot x^4 \cdot \frac{1}{x^2} = 15x^2 \] 4. For \(r = 3\): \[ \binom{6}{3} x^{6-3} \left(\frac{1}{x}\right)^3 = 20 \cdot x^3 \cdot \frac{1}{x^3} = 20 \] 5. For \(r = 4\): \[ \binom{6}{4} x^{6-4} \left(\frac{1}{x}\right)^4 = 15 \cdot x^2 \cdot \frac{1}{x^4} = \frac{15}{x^2} \] 6. For \(r = 5\): \[ \binom{6}{5} x^{6-5} \left(\frac{1}{x}\right)^5 = 6 \cdot x^1 \cdot \frac{1}{x^5} = \frac{6}{x^4} \] 7. For \(r = 6\): \[ \binom{6}{6} x^{6-6} \left(\frac{1}{x}\right)^6 = 1 \cdot 1 \cdot \frac{1}{x^6} = \frac{1}{x^6} \] ### Step 4: Combine All Terms Now we combine all the terms from \(r = 0\) to \(r = 6\): \[ (x + \frac{1}{x})^6 = x^6 + 6x^4 + 15x^2 + 20 + \frac{15}{x^2} + \frac{6}{x^4} + \frac{1}{x^6} \] ### Final Answer Thus, the expansion of \((x + \frac{1}{x})^6\) is: \[ x^6 + 6x^4 + 15x^2 + 20 + \frac{15}{x^2} + \frac{6}{x^4} + \frac{1}{x^6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Expand |(3,x),(x,1)|

Expand ((2)/( x) - (x)/(2))^(5), x ne 0 .

Expand |(2,2x),(6,x)|

Expand |(7x,6), (2x, 1)|

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

Expand |(2,0), (3x , 6)|

If a f(x) +b f((1)/(x))=(1)/(x)-5,x ne 0,a ne b , then overset(2)underset(1)int f(x)dx equals

Solve : sqrt((x)/(1-x))+sqrt((1-x)/(x))=2(1)/(6), x ne 0 "and" x ne 1 .

If f(x)= {{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

f(x) ={{:( xe ^(-((1)/(x)+(1)/(|x|))), x ne 0),( a , x=0):} the value of a , such that f(x) is differentiable at x=0, is equal to