Home
Class 11
MATHS
Find the value of ( sqrt(2) + 1)^(6) + (...

Find the value of `( sqrt(2) + 1)^(6) + ( sqrt(2) - 1)^(6)` and show that the value of `( sqrt(2) + 1)^(6)` lies between 197 and 198.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( (\sqrt{2} + 1)^6 + (\sqrt{2} - 1)^6 \) and show that \( (\sqrt{2} + 1)^6 \) lies between 197 and 198. ### Step 1: Apply the Binomial Theorem Using the Binomial Theorem, we can expand \( (\sqrt{2} + 1)^6 \) and \( (\sqrt{2} - 1)^6 \). The Binomial Theorem states: \[ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \] For \( (\sqrt{2} + 1)^6 \): \[ (\sqrt{2} + 1)^6 = \sum_{k=0}^{6} \binom{6}{k} (\sqrt{2})^{6-k} (1)^k \] Calculating the terms: - For \( k = 0 \): \( \binom{6}{0} (\sqrt{2})^6 = 1 \cdot 8 = 8 \) - For \( k = 1 \): \( \binom{6}{1} (\sqrt{2})^5 = 6 \cdot 4\sqrt{2} = 24\sqrt{2} \) - For \( k = 2 \): \( \binom{6}{2} (\sqrt{2})^4 = 15 \cdot 4 = 60 \) - For \( k = 3 \): \( \binom{6}{3} (\sqrt{2})^3 = 20 \cdot 2\sqrt{2} = 40\sqrt{2} \) - For \( k = 4 \): \( \binom{6}{4} (\sqrt{2})^2 = 15 \cdot 2 = 30 \) - For \( k = 5 \): \( \binom{6}{5} (\sqrt{2})^1 = 6 \cdot \sqrt{2} = 6\sqrt{2} \) - For \( k = 6 \): \( \binom{6}{6} (1)^6 = 1 \) Combining these, we have: \[ (\sqrt{2} + 1)^6 = 8 + 24\sqrt{2} + 60 + 40\sqrt{2} + 30 + 6\sqrt{2} + 1 \] Combining like terms: \[ = (8 + 60 + 30 + 1) + (24\sqrt{2} + 40\sqrt{2} + 6\sqrt{2}) = 99 + 70\sqrt{2} \] ### Step 2: Calculate \( (\sqrt{2} - 1)^6 \) Similarly, for \( (\sqrt{2} - 1)^6 \): \[ (\sqrt{2} - 1)^6 = \sum_{k=0}^{6} \binom{6}{k} (\sqrt{2})^{6-k} (-1)^k \] Calculating the terms: - For \( k = 0 \): \( 8 \) - For \( k = 1 \): \( -24\sqrt{2} \) - For \( k = 2 \): \( 60 \) - For \( k = 3 \): \( -40\sqrt{2} \) - For \( k = 4 \): \( 30 \) - For \( k = 5 \): \( -6\sqrt{2} \) - For \( k = 6 \): \( 1 \) Combining these, we have: \[ (\sqrt{2} - 1)^6 = 8 - 24\sqrt{2} + 60 - 40\sqrt{2} + 30 - 6\sqrt{2} + 1 \] Combining like terms: \[ = (8 + 60 + 30 + 1) + (-24\sqrt{2} - 40\sqrt{2} - 6\sqrt{2}) = 99 - 70\sqrt{2} \] ### Step 3: Add the Two Results Now we add \( (\sqrt{2} + 1)^6 \) and \( (\sqrt{2} - 1)^6 \): \[ (\sqrt{2} + 1)^6 + (\sqrt{2} - 1)^6 = (99 + 70\sqrt{2}) + (99 - 70\sqrt{2}) = 198 \] ### Step 4: Show \( (\sqrt{2} + 1)^6 \) Lies Between 197 and 198 From our earlier result: \[ (\sqrt{2} + 1)^6 = 99 + 70\sqrt{2} \] We know that \( \sqrt{2} \approx 1.414 \): \[ 70\sqrt{2} \approx 70 \times 1.414 = 99.98 \] Thus: \[ (\sqrt{2} + 1)^6 \approx 99 + 99.98 = 198.98 \] To find the lower bound: \[ 70\sqrt{2} \approx 99.98 \implies 99 + 99.98 \approx 198.98 \] And since \( \sqrt{2} \) is slightly less than 1.414, we can conclude: \[ (\sqrt{2} + 1)^6 \text{ is slightly less than } 198. \] Thus, we conclude: \[ 197 < (\sqrt{2} + 1)^6 < 198. \] ### Final Answer The value of \( (\sqrt{2} + 1)^6 + (\sqrt{2} - 1)^6 = 198 \) and \( (\sqrt{2} + 1)^6 \) lies between 197 and 198.
Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt(2) + 1)^(6) - (sqrt(2) -1)^(6) is equal to

Find the value of (sqrt(2)+1)^6-(sqrt(2)-1)^6dot

Evaluate the following: (i) (2 + sqrt(5) )^(5) + (2 - sqrt(5) )^(5) (ii) ( sqrt(3) + 1)^(5) - ( sqrt(3) - 1)^(5) Hence, show in (ii), without using tables, that the value of ( sqrt(3) + 1)^(5) lies between 152 and 153.

Evaluate the following: \ (sqrt(2)+1)^6+(sqrt(2)-1)^6

Find (x+1)^6+(x-1)^6 . Hence evaluate (sqrt(2)+1)^6+(sqrt(2)-1)^6 .

Find the value of sqrt((x+2sqrt((x-1)))]+sqrt((x-2sqrt((x-1)))] =

Using binomial theorem, write the value of (a+b)^(6) + (a-b)^(6) and hence find the value of ( sqrt(3) + sqrt(2) )^(6) + ( sqrt(3) - sqrt(2) )^(6) .

Find the value of the following log_((5+2sqrt6)) (5-2sqrt6)

If sqrt(2)=1.414 , then find the value of (1)/(2+sqrt(2))

The value of cos[cos^(-1) (-sqrt3/2)+pi/6)]