Home
Class 11
MATHS
Expand (2+x+x^(2) )^(3)....

Expand `(2+x+x^(2) )^(3)`.

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((2 + x + x^2)^3\) using the Binomial Theorem, we can follow these steps: ### Step 1: Identify \(a\), \(b\), and \(n\) In the expression \((2 + x + x^2)^3\), we can treat \(2\) as \(a\) and \((x + x^2)\) as \(b\). Thus, we have: - \(a = 2\) - \(b = x + x^2\) - \(n = 3\) ### Step 2: Apply the Binomial Theorem The Binomial Theorem states that: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] For our case, we can write: \[ (2 + (x + x^2))^3 = \sum_{k=0}^{3} \binom{3}{k} 2^{3-k} (x + x^2)^k \] ### Step 3: Expand the terms Now we will expand each term in the summation: 1. For \(k = 0\): \[ \binom{3}{0} 2^{3} (x + x^2)^{0} = 1 \cdot 8 \cdot 1 = 8 \] 2. For \(k = 1\): \[ \binom{3}{1} 2^{2} (x + x^2)^{1} = 3 \cdot 4 \cdot (x + x^2) = 12(x + x^2) = 12x + 12x^2 \] 3. For \(k = 2\): \[ \binom{3}{2} 2^{1} (x + x^2)^{2} = 3 \cdot 2 \cdot (x^2 + 2x^3 + x^4) = 6(x^2 + 2x^3 + x^4) = 6x^2 + 12x^3 + 6x^4 \] 4. For \(k = 3\): \[ \binom{3}{3} 2^{0} (x + x^2)^{3} = 1 \cdot 1 \cdot (x^3 + 3x^4 + 3x^5 + x^6) = x^3 + 3x^4 + 3x^5 + x^6 \] ### Step 4: Combine all the terms Now we combine all the terms we calculated: \[ 8 + (12x + 12x^2) + (6x^2 + 12x^3 + 6x^4) + (x^3 + 3x^4 + 3x^5 + x^6) \] ### Step 5: Group like terms Now we group the like terms: - Constant term: \(8\) - Coefficient of \(x\): \(12x\) - Coefficient of \(x^2\): \(12x^2 + 6x^2 = 18x^2\) - Coefficient of \(x^3\): \(12x^3 + x^3 = 13x^3\) - Coefficient of \(x^4\): \(6x^4 + 3x^4 = 9x^4\) - Coefficient of \(x^5\): \(3x^5\) - Coefficient of \(x^6\): \(x^6\) ### Final Result Putting it all together, we have: \[ (2 + x + x^2)^3 = 8 + 12x + 18x^2 + 13x^3 + 9x^4 + 3x^5 + x^6 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Expand (1+ 2 x + 3x^(2) )^(n) in a series of ascending powers of x up to and including the term in x^2 .

Expand : (2x- y + 2)^(3)

Expand: (x+y- z)^(2)

Expand (2x + 5y)^(5)

Expand: (1-x+x^2)^4

Expand (3x-2y)^(4)

Expand (3x^2- x/2)^5

Expand : (i) (3x + 2)^3

Expand (3x-2y)^(4) .

Expand (1+x)^-2 .