Home
Class 11
MATHS
Prove that sum(r=0)^(n) 3^( r" "n)C(r ) ...

Prove that `sum_(r=0)^(n) 3^( r" "n)C_(r ) =4^(n)`.

Text Solution

Verified by Experts

The correct Answer is:
`=4^(n)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that Sigma_(r=0)^(n) 3^(r)""^(n)C_(r)=4^(n)

If x + y = 1 , prove that sum_(r=0)^(n) r""^(n)C_(r) x^(r ) y^(n-r) = nx .

Prove that sum_(r=0)^n^n C_r3^r=4^n

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2.""^(4n-1)C_(2n-1) .

Prove that Sigma_(r=0)^(n) ""^(n)C_(r).3^(r)=4^(n)

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

Prove that sum_(r=0)^(n) ""^(n)C_(r )sin rx. cos (n-r)x = 2^(n-1) xx sin nx .

Prove that sum_(r=0)^n3^r^n C_r=4^n .

Prove that sum_(r = 1)^(n+1) (2^(r +1) C_(r - 1) )/(r (r + 1)) = (3^(n+2) - 2n - 5)/((n+1)(n+2))

Prove that sum_(r=0)^(n) ""^(n)C_(r).(n-r)cos((2rpi)/(n)) = - n.2^(n-1).cos^(n)'(pi)/(n) .