Home
Class 11
MATHS
Using binomial theorem, write the value ...

Using binomial theorem, write the value of `(a+b)^(6) + (a-b)^(6)` and hence find the value of `( sqrt(3) + sqrt(2) )^(6) + ( sqrt(3) - sqrt(2) )^(6)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the Binomial Theorem to find the value of \((a+b)^6 + (a-b)^6\) and then substitute \(a = \sqrt{3}\) and \(b = \sqrt{2}\) to find the specific value. ### Step 1: Apply the Binomial Theorem According to the Binomial Theorem, we can expand \((a+b)^6\) and \((a-b)^6\) as follows: \[ (a+b)^6 = \sum_{k=0}^{6} \binom{6}{k} a^{6-k} b^k \] \[ = \binom{6}{0} a^6 b^0 + \binom{6}{1} a^5 b^1 + \binom{6}{2} a^4 b^2 + \binom{6}{3} a^3 b^3 + \binom{6}{4} a^2 b^4 + \binom{6}{5} a^1 b^5 + \binom{6}{6} a^0 b^6 \] Calculating the coefficients: \[ = 1 \cdot a^6 + 6 \cdot a^5 b + 15 \cdot a^4 b^2 + 20 \cdot a^3 b^3 + 15 \cdot a^2 b^4 + 6 \cdot a b^5 + 1 \cdot b^6 \] ### Step 2: Expand \((a-b)^6\) Now, we expand \((a-b)^6\): \[ (a-b)^6 = \sum_{k=0}^{6} \binom{6}{k} a^{6-k} (-b)^k \] \[ = \binom{6}{0} a^6 (-b)^0 + \binom{6}{1} a^5 (-b)^1 + \binom{6}{2} a^4 (-b)^2 + \binom{6}{3} a^3 (-b)^3 + \binom{6}{4} a^2 (-b)^4 + \binom{6}{5} a^1 (-b)^5 + \binom{6}{6} a^0 (-b)^6 \] Calculating the coefficients: \[ = 1 \cdot a^6 - 6 \cdot a^5 b + 15 \cdot a^4 b^2 - 20 \cdot a^3 b^3 + 15 \cdot a^2 b^4 - 6 \cdot a b^5 + 1 \cdot b^6 \] ### Step 3: Add the Two Expansions Now we add \((a+b)^6\) and \((a-b)^6\): \[ (a+b)^6 + (a-b)^6 = \left(1 \cdot a^6 + 6 \cdot a^5 b + 15 \cdot a^4 b^2 + 20 \cdot a^3 b^3 + 15 \cdot a^2 b^4 + 6 \cdot a b^5 + 1 \cdot b^6\right) + \left(1 \cdot a^6 - 6 \cdot a^5 b + 15 \cdot a^4 b^2 - 20 \cdot a^3 b^3 + 15 \cdot a^2 b^4 - 6 \cdot a b^5 + 1 \cdot b^6\right) \] Combining like terms: \[ = 2a^6 + 0 + 30a^4b^2 + 0 + 30a^2b^4 + 2b^6 \] \[ = 2a^6 + 30a^4b^2 + 30a^2b^4 + 2b^6 \] ### Step 4: Substitute \(a = \sqrt{3}\) and \(b = \sqrt{2}\) Now we substitute \(a = \sqrt{3}\) and \(b = \sqrt{2}\): \[ = 2(\sqrt{3})^6 + 30(\sqrt{3})^4(\sqrt{2})^2 + 30(\sqrt{3})^2(\sqrt{2})^4 + 2(\sqrt{2})^6 \] Calculating each term: 1. \((\sqrt{3})^6 = 27\) 2. \((\sqrt{3})^4 = 9\) 3. \((\sqrt{2})^2 = 2\) 4. \((\sqrt{3})^2 = 3\) 5. \((\sqrt{2})^4 = 4\) 6. \((\sqrt{2})^6 = 8\) Now substituting these values: \[ = 2(27) + 30(9)(2) + 30(3)(4) + 2(8) \] \[ = 54 + 540 + 360 + 16 \] \[ = 970 \] ### Final Answer Thus, the value of \((\sqrt{3} + \sqrt{2})^6 + (\sqrt{3} - \sqrt{2})^6\) is \(\boxed{970}\).
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    ICSE|Exercise EXERCISE 13 (b)|33 Videos
  • BASIC CONCEPTS OF POINTS AND THEIR COORDINATES

    ICSE|Exercise CHAPTER TEST|2 Videos
  • CIRCLE

    ICSE|Exercise CHAPTER TEST |11 Videos

Similar Questions

Explore conceptually related problems

Evaluate (sqrt(3)+sqrt(2))^6-(sqrt(3)-sqrt(2))^6dot

Using binomial theorem, expand [ ( x+y)^(5) + (x-y)^(5) ] and hence find the value of [ ( sqrt(3) + 1)^(5) - ( sqrt(3) - 1)^(5) ] .

Find the value of (sqrt(2)+1)^6-(sqrt(2)-1)^6dot

Evaluate (sqrt(3)-sqrt(2))^6+(sqrt(3)+sqrt(2))^6dot

Evaluate the following: \ (sqrt(3)+sqrt(2))^6-(sqrt(3)-sqrt(2))^6

Find the values of a and b if : (2sqrt(3)+3sqrt(2))/(2sqrt(3)-3sqrt(2))=a+bsqrt(6)

The value 4^(5log_(4sqrt(2))(3-sqrt(6))-6log_8(sqrt(3)-sqrt(2))) is

Find (a+b)^4-(a-b)^4dot Hence evaluate (sqrt(3)+sqrt(2))^4-(sqrt(3)-sqrt(2))^4

If P+Q=(7pi)/(6) , then find the value of (sqrt(3)+tanP)xx(sqrt(3)+tanQ) .

Find (1+x)^(6) - (1-x)^(6) . Hence evaluate (1+sqrt3)^(6) - (1-sqrt3)^(6)