Home
Class 11
MATHS
If (1+x-2x^2)^(6) = 1 + a(1) x + a(2) x^...

If `(1+x-2x^2)^(6) = 1 + a_(1) x + a_(2) x^(2) + ... + a_(12) x^(12)`, then find ` a_2+ a_4 + ... + a_12`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the coefficients \( a_2 + a_4 + a_6 + a_8 + a_{10} + a_{12} \) in the expansion of \( (1 + x - 2x^2)^6 \). ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression \( (1 + x - 2x^2)^6 \). 2. **Using the Binomial Theorem**: The Binomial Theorem states that \( (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \). Here, we can treat \( a = 1 + x \) and \( b = -2x^2 \). 3. **Setting Up the Coefficients**: We want to find the coefficients of \( x^2, x^4, x^6, x^8, x^{10}, x^{12} \). To do this, we can evaluate the expression at specific values of \( x \). 4. **Evaluating at \( x = 1 \)**: First, we substitute \( x = 1 \): \[ (1 + 1 - 2 \cdot 1^2)^6 = (1 + 1 - 2)^6 = 0^6 = 0 \] This gives us: \[ 1 + a_1 + a_2 + a_3 + \ldots + a_{12} = 0 \quad \text{(Equation 1)} \] 5. **Evaluating at \( x = -1 \)**: Next, we substitute \( x = -1 \): \[ (1 - 1 - 2 \cdot (-1)^2)^6 = (1 - 1 - 2)^6 = (-2)^6 = 64 \] This gives us: \[ 1 - a_1 + a_2 - a_3 + a_4 - a_5 + a_6 - a_7 + a_8 - a_9 + a_{10} - a_{11} + a_{12} = 64 \quad \text{(Equation 2)} \] 6. **Adding Equations**: Now, we add Equation 1 and Equation 2: \[ (1 + a_1 + a_2 + a_3 + \ldots + a_{12}) + (1 - a_1 + a_2 - a_3 + \ldots + a_{12}) = 0 + 64 \] This simplifies to: \[ 2 + 2(a_2 + a_4 + a_6 + a_8 + a_{10} + a_{12}) = 64 \] 7. **Solving for the Sum**: Rearranging gives: \[ 2(a_2 + a_4 + a_6 + a_8 + a_{10} + a_{12}) = 64 - 2 = 62 \] Dividing by 2: \[ a_2 + a_4 + a_6 + a_8 + a_{10} + a_{12} = \frac{62}{2} = 31 \] ### Final Answer: Thus, the value of \( a_2 + a_4 + a_6 + a_8 + a_{10} + a_{12} \) is \( \boxed{31} \).
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    ICSE|Exercise EXERCISE 13 (b)|33 Videos
  • BASIC CONCEPTS OF POINTS AND THEIR COORDINATES

    ICSE|Exercise CHAPTER TEST|2 Videos
  • CIRCLE

    ICSE|Exercise CHAPTER TEST |11 Videos

Similar Questions

Explore conceptually related problems

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

If (x^(2) + x)/(1-x) = a_(1) x + a_(2) x^(2) + ... to infty , |x| lt 1, then

If (1+x-2x^2)^6=1+a_1x+a_2x^(2)++a_(12)x^(12), then find the value of a_2+a_4+a_6++a_(12)dot

If (1+x+2x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40) , then find the value of a_(0) + a_(1) + a_(2) + "……" + a_(38) .

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If (1+x-2x^2)^6=1+a_1x+a_2x^(2)+.........+a_(12)x^(12), then find the value of a_2+a_4+a_6+................+a_(12) .

If (e^(x) -1)^(2) =a_0 +a_(1)x +a_(2) x^2 + ......oo then a_4 =

If (1+2x+3x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+ . . .+a_(20)x^(20), then

Let (1 + x^(2))^(2) (1 + x)^(n) = a_(0) + a_(1) x + a_(2) x^(2) + … if a_(1),a_(2) " and " a_(3) are in A.P , the value of n is

If (1+x) ^(15) =a_(0) +a_(1) x +a_(2) x ^(2) +…+ a_(15) x ^(15), then the value of sum_(r=1) ^(15) r . (a_(r))/(a _(r-1)) is-