Home
Class 11
MATHS
(ii) Differentiate y=x^(3) sqrt( 3x -4...

(ii) Differentiate `y=x^(3) sqrt( 3x -4)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = x^3 \sqrt{3x - 4} \), we will apply the product rule of differentiation. The product rule states that if \( y = u \cdot v \), then \[ \frac{dy}{dx} = u'v + uv' \] where \( u' \) and \( v' \) are the derivatives of \( u \) and \( v \) respectively. ### Step 1: Identify \( u \) and \( v \) Let: - \( u = x^3 \) - \( v = \sqrt{3x - 4} \) ### Step 2: Differentiate \( u \) Now, we differentiate \( u \): \[ u' = \frac{d}{dx}(x^3) = 3x^2 \] ### Step 3: Differentiate \( v \) Next, we differentiate \( v \). Since \( v = (3x - 4)^{1/2} \), we will use the chain rule: \[ v' = \frac{1}{2}(3x - 4)^{-1/2} \cdot \frac{d}{dx}(3x - 4) \] Calculating the derivative of \( 3x - 4 \): \[ \frac{d}{dx}(3x - 4) = 3 \] Thus, \[ v' = \frac{1}{2}(3x - 4)^{-1/2} \cdot 3 = \frac{3}{2\sqrt{3x - 4}} \] ### Step 4: Apply the Product Rule Now we can apply the product rule: \[ \frac{dy}{dx} = u'v + uv' \] Substituting the values we found: \[ \frac{dy}{dx} = (3x^2)(\sqrt{3x - 4}) + (x^3)\left(\frac{3}{2\sqrt{3x - 4}}\right) \] ### Step 5: Simplify the Expression Now we simplify the expression: \[ \frac{dy}{dx} = 3x^2\sqrt{3x - 4} + \frac{3x^3}{2\sqrt{3x - 4}} \] To combine these terms, we can find a common denominator: \[ \frac{dy}{dx} = \frac{6x^2(3x - 4) + 3x^3}{2\sqrt{3x - 4}} \] Simplifying the numerator: \[ 6x^2(3x - 4) + 3x^3 = 18x^3 - 24x^2 + 3x^3 = 21x^3 - 24x^2 \] Thus, we have: \[ \frac{dy}{dx} = \frac{21x^3 - 24x^2}{2\sqrt{3x - 4}} \] ### Final Result The derivative of \( y = x^3 \sqrt{3x - 4} \) is: \[ \frac{dy}{dx} = \frac{21x^3 - 24x^2}{2\sqrt{3x - 4}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ICSE|Exercise EXERCISE 19 (a)|12 Videos
  • DIFFERENTIATION

    ICSE|Exercise EXERCISE 19 (b)|26 Videos
  • CORRELATION ANALYSIS

    ICSE|Exercise Multiple Choice Question |7 Videos
  • ELLIPSE

    ICSE|Exercise CHAPTER TEST|10 Videos

Similar Questions

Explore conceptually related problems

Differentiate w.r.t y = x^(-2)

Differentiate w.r.t y = x^(10)

Differentiate sqrt(x) +1/ (sqrt(x) )

Differentiate sec(x+y) = xy

Differentiate w.r.t x y = 8x^(8)

Differentiate tan^-1((4sqrt(x))/(1-4x))

Differentiate y=(e^x)/(1+sinx)

Differentiate y=(e^x)/(1+sinx)

Differentiate y=(e^x)/(1+sinx)

Differentiate w.r.t x , y = x^(sinx)