Home
Class 11
MATHS
(i) Let y=((2+5x)^(2))/(x^(3) -1) then ...

(i) Let `y=((2+5x)^(2))/(x^(3) -1) ` then find dy/dx

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of the function \[ y = \frac{(2 + 5x)^2}{x^3 - 1} \] we will use the quotient rule for differentiation. The quotient rule states that if you have a function \( y = \frac{u}{v} \), then \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( u \) is the numerator and \( v \) is the denominator. ### Step 1: Identify \( u \) and \( v \) Let: - \( u = (2 + 5x)^2 \) - \( v = x^3 - 1 \) ### Step 2: Differentiate \( u \) and \( v \) **Differentiate \( u \)**: Using the chain rule, we first expand \( u \): \[ u = (2 + 5x)^2 = 4 + 20x + 25x^2 \] Now, differentiate \( u \): \[ \frac{du}{dx} = 0 + 20 + 50x = 50x + 20 \] **Differentiate \( v \)**: Now differentiate \( v \): \[ \frac{dv}{dx} = 3x^2 \] ### Step 3: Apply the Quotient Rule Now, we can apply the quotient rule: \[ \frac{dy}{dx} = \frac{(x^3 - 1)(50x + 20) - (2 + 5x)^2(3x^2)}{(x^3 - 1)^2} \] ### Step 4: Simplify the expression Now, we will simplify the numerator: 1. Expand \( (x^3 - 1)(50x + 20) \): \[ = 50x^4 + 20x^3 - 50x - 20 \] 2. Expand \( (2 + 5x)^2(3x^2) \): \[ (4 + 20x + 25x^2)(3x^2) = 12x^2 + 60x^3 + 75x^4 \] 3. Combine these results: \[ \frac{dy}{dx} = \frac{(50x^4 + 20x^3 - 50x - 20) - (12x^2 + 60x^3 + 75x^4)}{(x^3 - 1)^2} \] 4. Combine like terms in the numerator: \[ = \frac{(50x^4 - 75x^4) + (20x^3 - 60x^3) - 12x^2 - 50x - 20}{(x^3 - 1)^2} \] \[ = \frac{-25x^4 - 40x^3 - 12x^2 - 50x - 20}{(x^3 - 1)^2} \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{-25x^4 - 40x^3 - 12x^2 - 50x - 20}{(x^3 - 1)^2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ICSE|Exercise EXERCISE 19 (a)|12 Videos
  • DIFFERENTIATION

    ICSE|Exercise EXERCISE 19 (b)|26 Videos
  • CORRELATION ANALYSIS

    ICSE|Exercise Multiple Choice Question |7 Videos
  • ELLIPSE

    ICSE|Exercise CHAPTER TEST|10 Videos

Similar Questions

Explore conceptually related problems

If y = (3-x^2)(x^3-x+1) then find dy/dx

(ii) Let y= (x)/(a^(2) +x^(2)) then find dy/dx

If y=(x)/(x^(2)+1) , then find (dy)/(dx)

y=x^(2)+(1)/(x^(2)) . Find (dy)/(dx)

y=(5x)^(3cos 2x) then find (dy)/(dx) .

If y=[(x^2+1)/(x+1)] , then find (dy)/(dx) .

if y=sin^(-1)((5x+12sqrt(1-x^(2)))/(13)) then find (dy)/(dx)

y=x+x^(2)+(1)/(x)+(1)/(x^(3)) . Find (dy)/(dx)

If y=4x^4+2x^3+5/x+9 , then find dy//dx .

(i) If y= (x-1)/( 2x^(2) - 7x +5) , find (dy)/( dx) at x=2 .