Home
Class 11
MATHS
(ii) Let y= (x)/(a^(2) +x^(2)) then find...

(ii) Let `y= (x)/(a^(2) +x^(2))` then find dy/dx

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \frac{x}{a^2 + x^2} \), we will use the quotient rule of differentiation. The quotient rule states that if you have a function in the form of \( \frac{u}{v} \), where \( u \) and \( v \) are both functions of \( x \), then the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] ### Step-by-Step Solution: 1. **Identify \( u \) and \( v \)**: - Let \( u = x \) - Let \( v = a^2 + x^2 \) 2. **Find \( \frac{du}{dx} \)**: - The derivative of \( u \) with respect to \( x \) is: \[ \frac{du}{dx} = 1 \] 3. **Find \( \frac{dv}{dx} \)**: - The derivative of \( v \) with respect to \( x \) is: \[ \frac{dv}{dx} = 0 + 2x = 2x \] 4. **Apply the quotient rule**: - Substitute \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \) into the quotient rule formula: \[ \frac{dy}{dx} = \frac{(a^2 + x^2)(1) - (x)(2x)}{(a^2 + x^2)^2} \] 5. **Simplify the numerator**: - Calculate the numerator: \[ (a^2 + x^2) - 2x^2 = a^2 + x^2 - 2x^2 = a^2 - x^2 \] 6. **Write the final expression for \( \frac{dy}{dx} \)**: - Thus, the derivative is: \[ \frac{dy}{dx} = \frac{a^2 - x^2}{(a^2 + x^2)^2} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{a^2 - x^2}{(a^2 + x^2)^2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ICSE|Exercise EXERCISE 19 (a)|12 Videos
  • DIFFERENTIATION

    ICSE|Exercise EXERCISE 19 (b)|26 Videos
  • CORRELATION ANALYSIS

    ICSE|Exercise Multiple Choice Question |7 Videos
  • ELLIPSE

    ICSE|Exercise CHAPTER TEST|10 Videos

Similar Questions

Explore conceptually related problems

(i) Let y=((2+5x)^(2))/(x^(3) -1) then find dy/dx

If y=(x)/(x^(2)+1) , then find (dy)/(dx)

If y=((a x+b))/((x^2+c)) , then find dy/dx .

y=(5x)^(3cos 2x) then find (dy)/(dx) .

y=x^(3/2) find dy/dx

If y=(sin x)^(x)+x^(2) find (dy)/(dx)

If y=[(x^2+1)/(x+1)] , then find (dy)/(dx) .

If y^2=a x^2+b x+c , then find (dy)/(dx)

If y=3x^2+2x , then find dy//dx .

y=x^(2)+(1)/(x^(2)) . Find (dy)/(dx)