Home
Class 11
MATHS
(iv) Let y= (1)/( ax^(2) + bx + c) then ...

(iv) Let `y= (1)/( ax^(2) + bx + c)` then find dy/dx

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \frac{1}{ax^2 + bx + c} \), we will use the chain rule and the power rule of differentiation. Here’s the step-by-step solution: ### Step 1: Rewrite the function We can rewrite the function \( y \) in a form that is easier to differentiate: \[ y = (ax^2 + bx + c)^{-1} \] ### Step 2: Differentiate using the chain rule Now, we will differentiate \( y \) with respect to \( x \). Using the chain rule, we have: \[ \frac{dy}{dx} = -1 \cdot (ax^2 + bx + c)^{-2} \cdot \frac{d}{dx}(ax^2 + bx + c) \] ### Step 3: Differentiate the inner function Next, we need to find the derivative of the inner function \( ax^2 + bx + c \): \[ \frac{d}{dx}(ax^2 + bx + c) = 2ax + b \] ### Step 4: Substitute back into the derivative Now, substituting this back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = -1 \cdot (ax^2 + bx + c)^{-2} \cdot (2ax + b) \] ### Step 5: Simplify the expression Thus, we can write: \[ \frac{dy}{dx} = -\frac{2ax + b}{(ax^2 + bx + c)^2} \] ### Final Answer The derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = -\frac{2ax + b}{(ax^2 + bx + c)^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ICSE|Exercise EXERCISE 19 (a)|12 Videos
  • DIFFERENTIATION

    ICSE|Exercise EXERCISE 19 (b)|26 Videos
  • CORRELATION ANALYSIS

    ICSE|Exercise Multiple Choice Question |7 Videos
  • ELLIPSE

    ICSE|Exercise CHAPTER TEST|10 Videos

Similar Questions

Explore conceptually related problems

(ii) Let y= (x)/(a^(2) +x^(2)) then find dy/dx

(i) Let y=((2+5x)^(2))/(x^(3) -1) then find dy/dx

If y=(1)/(sqrtx)=(x)^(-1//2) , then find dy//dx .

If y=((a x+b))/((x^2+c)) , then find dy/dx .

If y^2=a x^2+b x+c , then find (dy)/(dx)

If y=[(x^2+1)/(x+1)] , then find (dy)/(dx) .

y=1/(1+x) find dy/dx

If x y=c^2 , find (dy)/(dx)

If y=[3x+2][2x-1] , then find (dy)/(dx) .

Let f(X) = ax^(2) + bx + c . Consider the following diagram .