Home
Class 11
MATHS
(v) Let y= sqrt{(1+x)/(1-x)} find dy/dx...

(v) Let `y= sqrt{(1+x)/(1-x)}` find dy/dx

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \sqrt{\frac{1+x}{1-x}}\), we will use the quotient rule and the chain rule of differentiation. Let's go through the steps: ### Step 1: Rewrite the function We start with the function: \[ y = \sqrt{\frac{1+x}{1-x}} \] This can be rewritten as: \[ y = \left( \frac{1+x}{1-x} \right)^{1/2} \] ### Step 2: Use the chain rule To differentiate \(y\), we apply the chain rule. The derivative of \(y\) with respect to \(x\) is: \[ \frac{dy}{dx} = \frac{1}{2} \left( \frac{1+x}{1-x} \right)^{-1/2} \cdot \frac{d}{dx} \left( \frac{1+x}{1-x} \right) \] ### Step 3: Differentiate the inner function using the quotient rule Now we need to differentiate \(\frac{1+x}{1-x}\) using the quotient rule: \[ \frac{d}{dx} \left( \frac{1+x}{1-x} \right) = \frac{(1-x)(1) - (1+x)(-1)}{(1-x)^2} \] Simplifying this gives: \[ \frac{(1-x) + (1+x)}{(1-x)^2} = \frac{2}{(1-x)^2} \] ### Step 4: Substitute back into the derivative Now substituting back into our expression for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{1}{2} \left( \frac{1+x}{1-x} \right)^{-1/2} \cdot \frac{2}{(1-x)^2} \] ### Step 5: Simplify the expression This simplifies to: \[ \frac{dy}{dx} = \frac{1}{(1-x)^2} \cdot \left( \frac{1+x}{1-x} \right)^{-1/2} \] We can rewrite \(\left( \frac{1+x}{1-x} \right)^{-1/2}\) as: \[ \frac{1}{\sqrt{\frac{1+x}{1-x}}} = \frac{\sqrt{1-x}}{\sqrt{1+x}} \] Thus, we have: \[ \frac{dy}{dx} = \frac{\sqrt{1-x}}{(1-x)^2 \sqrt{1+x}} \] ### Final Answer So, the final expression for \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{\sqrt{1-x}}{(1-x)^2 \sqrt{1+x}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ICSE|Exercise EXERCISE 19 (a)|12 Videos
  • DIFFERENTIATION

    ICSE|Exercise EXERCISE 19 (b)|26 Videos
  • CORRELATION ANALYSIS

    ICSE|Exercise Multiple Choice Question |7 Videos
  • ELLIPSE

    ICSE|Exercise CHAPTER TEST|10 Videos

Similar Questions

Explore conceptually related problems

y=1/(1+x) find dy/dx

If sqrt(1-x^6) then find dy/dx

If y = sqrt(1-cosx)/(1+ cos x) find (dy)/(dx)

If y=sin[2tan^(-1){sqrt((1-x)/(1+x))}], find (dy)/(dx)

If y=sin[2tan^(-1){sqrt((1-x)/(1+x))}], find (dy)/(dx)

If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

If y=tan^(-1)((sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) find (dy)/(dx)

(ii) Let y= (x)/(a^(2) +x^(2)) then find dy/dx

y=sqrt((x^(2)+x+1)/(x^(2)-x+1)) find dy/dx

If y=sqrt((1-x)/(1+x) then (dy)/(dx) equals