Home
Class 11
MATHS
Differentiate from first principles: 4...

Differentiate from first principles:
4. `(1)/( sqrtx)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( f(x) = \frac{1}{\sqrt{x}} \) from first principles, we will follow these steps: ### Step 1: Define the function and the difference quotient We start with the function: \[ f(x) = \frac{1}{\sqrt{x}} \] According to the first principle of differentiation, the derivative \( f'(x) \) is given by: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] ### Step 2: Substitute \( f(x+h) \) and \( f(x) \) Now, we need to find \( f(x+h) \): \[ f(x+h) = \frac{1}{\sqrt{x+h}} \] Substituting into the limit gives: \[ f'(x) = \lim_{h \to 0} \frac{\frac{1}{\sqrt{x+h}} - \frac{1}{\sqrt{x}}}{h} \] ### Step 3: Simplify the expression To simplify the expression, we need a common denominator for the fractions in the numerator: \[ f'(x) = \lim_{h \to 0} \frac{\sqrt{x} - \sqrt{x+h}}{\sqrt{x} \cdot \sqrt{x+h} \cdot h} \] ### Step 4: Rationalize the numerator Next, we rationalize the numerator by multiplying by the conjugate: \[ f'(x) = \lim_{h \to 0} \frac{(\sqrt{x} - \sqrt{x+h})(\sqrt{x} + \sqrt{x+h})}{(\sqrt{x} + \sqrt{x+h}) \cdot \sqrt{x} \cdot \sqrt{x+h} \cdot h} \] This simplifies to: \[ f'(x) = \lim_{h \to 0} \frac{x - (x+h)}{(\sqrt{x} + \sqrt{x+h}) \cdot \sqrt{x} \cdot \sqrt{x+h} \cdot h} \] \[ = \lim_{h \to 0} \frac{-h}{(\sqrt{x} + \sqrt{x+h}) \cdot \sqrt{x} \cdot \sqrt{x+h} \cdot h} \] ### Step 5: Cancel \( h \) We can cancel \( h \) from the numerator and denominator: \[ f'(x) = \lim_{h \to 0} \frac{-1}{(\sqrt{x} + \sqrt{x+h}) \cdot \sqrt{x} \cdot \sqrt{x+h}} \] ### Step 6: Evaluate the limit Now we can evaluate the limit as \( h \) approaches 0: \[ f'(x) = \frac{-1}{(\sqrt{x} + \sqrt{x}) \cdot \sqrt{x} \cdot \sqrt{x}} = \frac{-1}{2\sqrt{x} \cdot \sqrt{x} \cdot \sqrt{x}} = \frac{-1}{2x\sqrt{x}} \] ### Final Result Thus, the derivative of \( f(x) = \frac{1}{\sqrt{x}} \) is: \[ f'(x) = -\frac{1}{2x^{3/2}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ICSE|Exercise EXERCISE 19 (b)|26 Videos
  • DIFFERENTIATION

    ICSE|Exercise EXERCISE 19 (c )|21 Videos
  • DIFFERENTIATION

    ICSE|Exercise CHAPTER TEST|10 Videos
  • CORRELATION ANALYSIS

    ICSE|Exercise Multiple Choice Question |7 Videos
  • ELLIPSE

    ICSE|Exercise CHAPTER TEST|10 Videos

Similar Questions

Explore conceptually related problems

Differentiate from first principles: 1. 2x

Differentiate from first principles: 7. (1)/( sqrt (x+1))

Differentiate from first principles: 3. x^3

Differentiate from first principles: 2. (x-1)^(2)

Differentiate from first principles: 8. x+ (1)/( x)

Differentiate from first principles: 12. (x^2+1)/( x)

Differentiate x e^x from first principles.

Differentiate from first principles: 10. (1)/( x^((3)/(2)) )

Differentiate from first principles: 6. (2x+3)/( 3x+2)

Differentiate e^(-x) from first principles