Home
Class 11
MATHS
Differentiate from first principles: 1...

Differentiate from first principles:
10. `(1)/( x^((3)/(2)) )`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( f(x) = \frac{1}{x^{\frac{3}{2}}} \) from first principles, we will follow the definition of the derivative: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] ### Step 1: Write down the function and the increment Given: \[ f(x) = \frac{1}{x^{\frac{3}{2}}} \] We need to find \( f(x+h) \): \[ f(x+h) = \frac{1}{(x+h)^{\frac{3}{2}}} \] ### Step 2: Substitute into the derivative formula Now substitute \( f(x) \) and \( f(x+h) \) into the derivative formula: \[ f'(x) = \lim_{h \to 0} \frac{\frac{1}{(x+h)^{\frac{3}{2}}} - \frac{1}{x^{\frac{3}{2}}}}{h} \] ### Step 3: Combine the fractions in the numerator To combine the fractions in the numerator, we need a common denominator: \[ f'(x) = \lim_{h \to 0} \frac{x^{\frac{3}{2}} - (x+h)^{\frac{3}{2}}}{h \cdot (x+h)^{\frac{3}{2}} \cdot x^{\frac{3}{2}}} \] ### Step 4: Simplify the numerator Now we simplify the numerator \( x^{\frac{3}{2}} - (x+h)^{\frac{3}{2}} \). Using the binomial expansion for \( (x+h)^{\frac{3}{2}} \): \[ (x+h)^{\frac{3}{2}} = x^{\frac{3}{2}} + \frac{3}{2} x^{\frac{1}{2}} h + O(h^2) \] Thus, \[ x^{\frac{3}{2}} - (x+h)^{\frac{3}{2}} = -\frac{3}{2} x^{\frac{1}{2}} h + O(h^2) \] ### Step 5: Substitute back into the limit Substituting back into the limit gives: \[ f'(x) = \lim_{h \to 0} \frac{-\frac{3}{2} x^{\frac{1}{2}} h + O(h^2)}{h \cdot (x+h)^{\frac{3}{2}} \cdot x^{\frac{3}{2}}} \] ### Step 6: Cancel \( h \) in the numerator and denominator We can cancel \( h \) from the numerator and denominator: \[ f'(x) = \lim_{h \to 0} \frac{-\frac{3}{2} x^{\frac{1}{2}} + O(h)}{(x+h)^{\frac{3}{2}} \cdot x^{\frac{3}{2}}} \] ### Step 7: Evaluate the limit as \( h \to 0 \) As \( h \to 0 \), \( (x+h)^{\frac{3}{2}} \) approaches \( x^{\frac{3}{2}} \): \[ f'(x) = \frac{-\frac{3}{2} x^{\frac{1}{2}}}{x^{\frac{3}{2}} \cdot x^{\frac{3}{2}}} = \frac{-\frac{3}{2} x^{\frac{1}{2}}}{x^{3}} = -\frac{3}{2} \cdot \frac{1}{x^{\frac{5}{2}}} \] ### Final Result Thus, the derivative is: \[ f'(x) = -\frac{3}{2} x^{-\frac{5}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ICSE|Exercise EXERCISE 19 (b)|26 Videos
  • DIFFERENTIATION

    ICSE|Exercise EXERCISE 19 (c )|21 Videos
  • DIFFERENTIATION

    ICSE|Exercise CHAPTER TEST|10 Videos
  • CORRELATION ANALYSIS

    ICSE|Exercise Multiple Choice Question |7 Videos
  • ELLIPSE

    ICSE|Exercise CHAPTER TEST|10 Videos

Similar Questions

Explore conceptually related problems

Differentiate from first principles: 1. 2x

Differentiate from first principles: 3. x^3

Differentiate from first principles: 8. x+ (1)/( x)

Differentiate from first principles: 12. (x^2+1)/( x)

Differentiate from first principles: 2. (x-1)^(2)

Differentiate from first principles: 4. (1)/( sqrtx)

Differentiate from first principles: 11. (x+1)(2x-3)

Differentiate x e^x from first principles.

Differentiate e^(-x) from first principles

Differentiate from first principles: 6. (2x+3)/( 3x+2)