Home
Class 11
MATHS
Given that y= (3x -1)^(2) + (2x -1)^(3),...

Given that `y= (3x -1)^(2) + (2x -1)^(3)`, find `(dy)/( dx)` and the points on the curve for which `(dy)/(dx)=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( y = (3x - 1)^2 + (2x - 1)^3 \) and then determine the points on the curve where this derivative equals zero. ### Step 1: Differentiate the function We start with the function: \[ y = (3x - 1)^2 + (2x - 1)^3 \] Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}[(3x - 1)^2] + \frac{d}{dx}[(2x - 1)^3] \] ### Step 2: Apply the chain rule Using the chain rule for differentiation, we find: 1. For \( (3x - 1)^2 \): \[ \frac{d}{dx}[(3x - 1)^2] = 2(3x - 1) \cdot \frac{d}{dx}[3x - 1] = 2(3x - 1) \cdot 3 = 6(3x - 1) \] 2. For \( (2x - 1)^3 \): \[ \frac{d}{dx}[(2x - 1)^3] = 3(2x - 1)^2 \cdot \frac{d}{dx}[2x - 1] = 3(2x - 1)^2 \cdot 2 = 6(2x - 1)^2 \] ### Step 3: Combine the derivatives Now, we combine the results from the two derivatives: \[ \frac{dy}{dx} = 6(3x - 1) + 6(2x - 1)^2 \] ### Step 4: Factor out common terms We can factor out the common term \( 6 \): \[ \frac{dy}{dx} = 6 \left( (3x - 1) + (2x - 1)^2 \right) \] ### Step 5: Set the derivative to zero To find the points where \( \frac{dy}{dx} = 0 \): \[ 6 \left( (3x - 1) + (2x - 1)^2 \right) = 0 \] This simplifies to: \[ (3x - 1) + (2x - 1)^2 = 0 \] ### Step 6: Expand and simplify Expanding \( (2x - 1)^2 \): \[ (2x - 1)^2 = 4x^2 - 4x + 1 \] Thus, we have: \[ 3x - 1 + 4x^2 - 4x + 1 = 0 \] Combining like terms: \[ 4x^2 - x + 0 = 0 \] ### Step 7: Factor the quadratic equation Factoring out \( x \): \[ x(4x - 1) = 0 \] This gives us: \[ x = 0 \quad \text{or} \quad 4x - 1 = 0 \Rightarrow x = \frac{1}{4} \] ### Step 8: Find the corresponding y-values Now we find the corresponding \( y \) values for \( x = 0 \) and \( x = \frac{1}{4} \): 1. For \( x = 0 \): \[ y = (3(0) - 1)^2 + (2(0) - 1)^3 = (-1)^2 + (-1)^3 = 1 - 1 = 0 \] So, the point is \( (0, 0) \). 2. For \( x = \frac{1}{4} \): \[ y = \left(3\left(\frac{1}{4}\right) - 1\right)^2 + \left(2\left(\frac{1}{4}\right) - 1\right)^3 \] \[ = \left(\frac{3}{4} - 1\right)^2 + \left(\frac{1}{2} - 1\right)^3 = \left(-\frac{1}{4}\right)^2 + \left(-\frac{1}{2}\right)^3 \] \[ = \frac{1}{16} - \frac{1}{8} = \frac{1}{16} - \frac{2}{16} = -\frac{1}{16} \] So, the point is \( \left(\frac{1}{4}, -\frac{1}{16}\right) \). ### Final Result The points on the curve for which \( \frac{dy}{dx} = 0 \) are: 1. \( (0, 0) \) 2. \( \left(\frac{1}{4}, -\frac{1}{16}\right) \)
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ICSE|Exercise EXERCISE 19 (d)|25 Videos
  • DIFFERENTIATION

    ICSE|Exercise CHAPTER TEST|10 Videos
  • DIFFERENTIATION

    ICSE|Exercise EXERCISE 19 (b)|26 Videos
  • CORRELATION ANALYSIS

    ICSE|Exercise Multiple Choice Question |7 Videos
  • ELLIPSE

    ICSE|Exercise CHAPTER TEST|10 Videos

Similar Questions

Explore conceptually related problems

Given that y=(3x-1)^(2)+(2x-1)^(3) , find (dy)/(dx) and points on the curve for which (dy)/(dx)=0 .

y=x^(3/2) find dy/dx

If y= (x^2 +3)/( x^3 + 2x) , find (dy)/( dx) at x=1 .

y=x(x+1)^3 find dy/dx

y=x+x^(2)+(1)/(x)+(1)/(x^(3)) . Find (dy)/(dx)

y=x^(2)+(1)/(x^(2)) . Find (dy)/(dx)

Given that y= sqrt( (1-x)/( 1+x)) show that (1-x^(2) ) (dy)/( dx) + y=0

y=(x^2+1/x^2)^3 find dy/dx

Given y= Sin 2x + x^3 , (dy)/(dx)

If y=[(x^2+1)/(x+1)] , then find (dy)/(dx) .

ICSE-DIFFERENTIATION-EXERCISE 19 (c )
  1. Differentiate the following w.r.t. x or t or u as the case may be: 2...

    Text Solution

    |

  2. Differentiate the following w.r.t. x : 3x(2x-1) (x+2)

    Text Solution

    |

  3. Differentiate the following w.r.t. x : (x-2) (x+3) (2x +5)

    Text Solution

    |

  4. Differentiate the following w.r.t. x or t or u as the case may be: 5...

    Text Solution

    |

  5. Differentiate the following w.r.t. x : y= (x^2 - 3)/( x+4)

    Text Solution

    |

  6. Differentiate the following w.r.t. x or t or u as the case may be: 7...

    Text Solution

    |

  7. Differentiate the following w.r.t. x or t or u as the case may be: ...

    Text Solution

    |

  8. Differentiate the following w.r.t. x or t or u as the case may be: ...

    Text Solution

    |

  9. Differentiate the following w.r.t. x or t or u as the case may be: 1...

    Text Solution

    |

  10. Differentiate the following w.r.t. x or t or u as the case may be: 1...

    Text Solution

    |

  11. Differentiate the following w.r.t. x or t or u as the case may be: 1...

    Text Solution

    |

  12. If f(x) = (x+2)/( x-2) for all x ne 2, find f' (-2).

    Text Solution

    |

  13. Differentiate (x+2)/(x^2-3) and find the value of the derivative at x ...

    Text Solution

    |

  14. If y= (x)/( x+a), prove that x (dy)/( dx) = y(1-y).

    Text Solution

    |

  15. If x sqrt ( 1+ y) + y sqrt( 1+x) =0, prove that (dy)/( dx) = - (1)/( (...

    Text Solution

    |

  16. Given that y= sqrt( (1-x)/( 1+x)) show that (1-x^(2) ) (dy)/( dx) + y=...

    Text Solution

    |

  17. Given that y= (3x -1)^(2) + (2x -1)^(3), find (dy)/( dx) and the poin...

    Text Solution

    |

  18. (i) If y= (x-1)/( 2x^(2) - 7x +5), find (dy)/( dx) at x=2.

    Text Solution

    |

  19. If y= (x^2 +3)/( x^3 + 2x), find (dy)/( dx) at x=1.

    Text Solution

    |

  20. Find the co-ordinates of the points on the curve y= (x)/( 1-x^(2)) " ...

    Text Solution

    |