To solve the equation \((-10) + \_\_\_\_ = (-10)\), we need to determine what number can be added to \(-10\) to still result in \(-10\).
### Step-by-Step Solution:
1. **Understand the Equation**: We start with the equation \((-10) + x = (-10)\), where \(x\) is the unknown number we need to find.
2. **Rearranging the Equation**: To isolate \(x\), we can move \(-10\) from the left side to the right side of the equation. When we do this, we must change the sign of \(-10\) to \(+10\):
\[
x = (-10) - (-10)
\]
3. **Simplifying the Right Side**: Now we simplify the right side:
\[
x = (-10) + 10
\]
4. **Calculating the Result**: When we add \(-10\) and \(+10\), we get:
\[
x = 0
\]
5. **Final Answer**: Therefore, the number that can be added to \(-10\) to still result in \(-10\) is:
\[
x = 0
\]
### Conclusion:
The complete equation is \((-10) + 0 = (-10)\).
In a carbon monoxide molecule, the carbon and the oxygen atoms are separted by a distance 1.12 xx 10^(-10) m. The distance of the centre of mass from the carbon atom is A. 0.64 xx 10^(-10)m B. 0.56xx10^(-6) m C. 0.51 xx 10^(-10) m D. 0.48 xx 10^(-10) m
The value of (log_(10)2)^3+log_(10)8log_(10)5+(log_(10)5)^3 is ............
If f: Rvec(-1,1) defined by f(x)=(10^x-10^(-x))/(10^x+10^(-x)) is invertible, find f^(-1)
If f: Rvec(-1,1) defined by f(x)=(10^x-10^(-x))/(10^x+10^(-x)) is invertible, find f^(-1)
What is the SI prefix for each of the following multiples and submultiples of a unit? a) 10^(3) b) 10^(-1) c) 10^(-2) d) 10^(-6) e) 10^(-9) f) 10^(-12)
The value of (log_(10)2)^(3)+log_(10)8 * log_(10) 5 + (log_(10)5)^(3) is _______.
Show that ( cos 10^(@) + sin 10 ^(@))/( cos 10^(@) - sin 10 ^(@)) = tan 55^(@).