Home
Class 7
MATHS
Find the sum (-4/9 + (-5)/12 + 1/18)...

Find the sum `(-4/9 + (-5)/12 + 1/18)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the rational numbers \(-\frac{4}{9} + \left(-\frac{5}{12}\right) + \frac{1}{18}\), we will follow these steps: ### Step 1: Identify the rational numbers We have three rational numbers: - \(-\frac{4}{9}\) - \(-\frac{5}{12}\) - \(\frac{1}{18}\) ### Step 2: Find the Least Common Multiple (LCM) of the denominators The denominators are 9, 12, and 18. We need to find the LCM of these numbers. - **Prime factorization**: - \(9 = 3^2\) - \(12 = 2^2 \times 3\) - \(18 = 2 \times 3^2\) - **Taking the highest powers of each prime**: - For 2: highest power is \(2^2\) from 12 - For 3: highest power is \(3^2\) from 9 or 18 Thus, the LCM is: \[ LCM = 2^2 \times 3^2 = 4 \times 9 = 36 \] ### Step 3: Convert each fraction to have the common denominator Now we convert each fraction to have a denominator of 36. 1. For \(-\frac{4}{9}\): \[ -\frac{4}{9} = -\frac{4 \times 4}{9 \times 4} = -\frac{16}{36} \] 2. For \(-\frac{5}{12}\): \[ -\frac{5}{12} = -\frac{5 \times 3}{12 \times 3} = -\frac{15}{36} \] 3. For \(\frac{1}{18}\): \[ \frac{1}{18} = \frac{1 \times 2}{18 \times 2} = \frac{2}{36} \] ### Step 4: Add the fractions Now we can add the fractions: \[ -\frac{16}{36} + -\frac{15}{36} + \frac{2}{36} = \frac{-16 - 15 + 2}{36} \] Calculating the numerator: \[ -16 - 15 + 2 = -31 + 2 = -29 \] So, we have: \[ \frac{-29}{36} \] ### Final Answer The sum of the rational numbers is: \[ -\frac{29}{36} \] ---
Promotional Banner

Topper's Solved these Questions

  • RATIONAL NUMBERS

    ICSE|Exercise EXERCISE 2A |19 Videos
  • RATIONAL NUMBERS

    ICSE|Exercise EXERCISE 2B|4 Videos
  • RATIO AND PROPORTION

    ICSE|Exercise Challenge |1 Videos
  • REPRESENTING 3 - D IN 2- D

    ICSE|Exercise EXERCISE 20 B |1 Videos

Similar Questions

Explore conceptually related problems

Find the sum: 5/9+\ 6+1 5/7

Find the sum: 9/(30)+5/(12)

Find the sum: 5/(12)+7/(16)

Find the sum to n terms (i) 1 + (1)/(3) + (1)/(9)+... (ii) 5 + 55 + 555+ ....

Find the sum of G.P. : 1+3+9+27+ . . . . .. . to 12 terms.

Find the sum of G.P. : 1-(1)/(2)+(1)/(4)-(1)/(8)+ . . . .. . . .. . to 9 terms .

Find the following sums : (i) 12 + 13 + 14 + …+ 37 (ii) 18^(2) + 19^(2) + 20 ^(2) +…+ 47^(2) (iii) 2^(3) + 4^(3) + 6^(3) +… + 18^(3)

Find the sum 3/2-5/6+7/(18)-9/(54)+...oodot

Find the sum 3/2-5/6+7/(18)-9/(54)+oodot

Find the sum:  (i) 5/8+3/(10) (ii) 4 3/4+9 2/5