Home
Class 7
MATHS
Simplify: (i) (-4/7) xx (21/20), (ii) (-...

Simplify: (i) `(-4/7) xx (21/20)`, (ii) `(-13)/9 xx (-21)/(-39)`

Text Solution

AI Generated Solution

The correct Answer is:
Let's simplify the given expressions step by step. ### Part (i): Simplify \((-4/7) \times (21/20)\) **Step 1:** Write the expression. \[ \frac{-4}{7} \times \frac{21}{20} \] **Step 2:** Factor the numbers to simplify. - The numerator of the first fraction is \(-4\) and the numerator of the second fraction is \(21\). - The denominator of the first fraction is \(7\) and the denominator of the second fraction is \(20\). **Step 3:** Simplify the fractions by finding common factors. - \(21\) can be divided by \(7\) (since \(7 \times 3 = 21\)). - \(-4\) can be divided by \(4\) (since \(4 \times 5 = 20\)). So we can rewrite: \[ \frac{-4}{7} \times \frac{21}{20} = \frac{-4 \div 4}{7 \div 7} \times \frac{21 \div 7}{20 \div 4} = \frac{-1}{1} \times \frac{3}{5} \] **Step 4:** Multiply the simplified fractions. \[ \frac{-1 \times 3}{1 \times 5} = \frac{-3}{5} \] **Final Answer for Part (i):** \[ \frac{-3}{5} \] --- ### Part (ii): Simplify \(\frac{-13}{9} \times \frac{-21}{-39}\) **Step 1:** Write the expression. \[ \frac{-13}{9} \times \frac{-21}{-39} \] **Step 2:** Simplify the fractions. - The numerator of the first fraction is \(-13\) and the numerator of the second fraction is \(-21\). - The denominator of the first fraction is \(9\) and the denominator of the second fraction is \(-39\). **Step 3:** Cancel out the negative signs. The negative signs in both fractions cancel each other out: \[ \frac{-13}{9} \times \frac{-21}{-39} = \frac{13}{9} \times \frac{21}{39} \] **Step 4:** Simplify \(\frac{21}{39}\). - \(21\) can be divided by \(3\) (since \(3 \times 7 = 21\)). - \(39\) can also be divided by \(3\) (since \(3 \times 13 = 39\)). So we can rewrite: \[ \frac{21}{39} = \frac{21 \div 3}{39 \div 3} = \frac{7}{13} \] **Step 5:** Now multiply the simplified fractions. \[ \frac{13}{9} \times \frac{7}{13} = \frac{13 \times 7}{9 \times 13} \] The \(13\) in the numerator and denominator cancels out: \[ = \frac{7}{9} \] **Final Answer for Part (ii):** \[ \frac{7}{9} \] ---
Promotional Banner

Topper's Solved these Questions

  • RATIONAL NUMBERS

    ICSE|Exercise EXERCISE 2A |19 Videos
  • RATIONAL NUMBERS

    ICSE|Exercise EXERCISE 2B|4 Videos
  • RATIO AND PROPORTION

    ICSE|Exercise Challenge |1 Videos
  • REPRESENTING 3 - D IN 2- D

    ICSE|Exercise EXERCISE 20 B |1 Videos

Similar Questions

Explore conceptually related problems

Simplify: (-24/7) xx (-14/9)

Simplify: (i) (-5)/9xx(72)/(-125) (ii) (-22)/9xx(-51)/(-88)

Simplify : (i) (-8)/7xx(14)/5 (ii) (13)/6xx(-18)/(91) (iii) (-5)/9xx(72)/(-125) (iv) (-22)/9xx(-51)/(-88)

Simplify: (i) (-8)/7xx(14)/5 (ii) (13)/6xx(-18)/(91)

Simplify: (i) (2/5 xx 5/8) + (-3/7 xx 14/-15) , (ii) (-14/3 xx -12/7) + (-6/25 xx 15/8) (iii) (6/25 xx -15/8) - (13/100 xx -25/26) , (iv) (-14/5 xx -10/7) -(-8/9 xx 3/16)

Simplify (i) (-4)^5 xx (-4)^(-10) (ii) 2^5 -: 2^(-6)

Simplify: (4/7)times(9/7)

Name the property under multiplication used in each of the following. (i) (-4)/5 xx 1 = 1 xx (-4)/5 (ii) (13)/(17) xx (-2)/7 = (-2)/7 xx (-13)/(17) (iii) (-19)/(29) xx (29)/(-19) =

Simplify: (i) 7/15 xx 5/6 , (ii) -5/24 xx 6/25 ,(iii) 7/(-18) xx -9/14 (iv) -9/5 xx -10/3 , (v) -28 xx -8/7 , (vi) 8/(-21) xx -14/3

Simplify: (i) (-5xx2/(15))-(-6xx2/9) (ii) ((-9)/4xx5/3)+((13)/2xx5/6)