Home
Class 7
MATHS
Add the following rational numbers: (i...

Add the following rational numbers:
(i) `-2/3` and `3/4`, (ii) `-4/9` and `5/6`, (iii) `-5/18` and `11/27`
(iv) `-7/12` and `-5/24`, (v) `-1/18` and `-7/27`, (vi) `21/(-4)` and `-11/8`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given rational number addition step by step. ### (i) Add `-2/3` and `3/4` 1. **Write the expression**: \[ -\frac{2}{3} + \frac{3}{4} \] 2. **Find the LCM of the denominators (3 and 4)**: The LCM of 3 and 4 is 12. 3. **Convert each fraction to have the same denominator**: - For `-2/3`: \[ -\frac{2}{3} = -\frac{2 \times 4}{3 \times 4} = -\frac{8}{12} \] - For `3/4`: \[ \frac{3}{4} = \frac{3 \times 3}{4 \times 3} = \frac{9}{12} \] 4. **Add the fractions**: \[ -\frac{8}{12} + \frac{9}{12} = \frac{-8 + 9}{12} = \frac{1}{12} \] **Final Answer**: \[ \frac{1}{12} \] --- ### (ii) Add `-4/9` and `5/6` 1. **Write the expression**: \[ -\frac{4}{9} + \frac{5}{6} \] 2. **Find the LCM of the denominators (9 and 6)**: The LCM of 9 and 6 is 18. 3. **Convert each fraction to have the same denominator**: - For `-4/9`: \[ -\frac{4}{9} = -\frac{4 \times 2}{9 \times 2} = -\frac{8}{18} \] - For `5/6`: \[ \frac{5}{6} = \frac{5 \times 3}{6 \times 3} = \frac{15}{18} \] 4. **Add the fractions**: \[ -\frac{8}{18} + \frac{15}{18} = \frac{-8 + 15}{18} = \frac{7}{18} \] **Final Answer**: \[ \frac{7}{18} \] --- ### (iii) Add `-5/18` and `11/27` 1. **Write the expression**: \[ -\frac{5}{18} + \frac{11}{27} \] 2. **Find the LCM of the denominators (18 and 27)**: The LCM of 18 and 27 is 54. 3. **Convert each fraction to have the same denominator**: - For `-5/18`: \[ -\frac{5}{18} = -\frac{5 \times 3}{18 \times 3} = -\frac{15}{54} \] - For `11/27`: \[ \frac{11}{27} = \frac{11 \times 2}{27 \times 2} = \frac{22}{54} \] 4. **Add the fractions**: \[ -\frac{15}{54} + \frac{22}{54} = \frac{-15 + 22}{54} = \frac{7}{54} \] **Final Answer**: \[ \frac{7}{54} \] --- ### (iv) Add `-7/12` and `-5/24` 1. **Write the expression**: \[ -\frac{7}{12} + -\frac{5}{24} \] 2. **Find the LCM of the denominators (12 and 24)**: The LCM of 12 and 24 is 24. 3. **Convert each fraction to have the same denominator**: - For `-7/12`: \[ -\frac{7}{12} = -\frac{7 \times 2}{12 \times 2} = -\frac{14}{24} \] - For `-5/24`: \[ -\frac{5}{24} = -\frac{5}{24} \] 4. **Add the fractions**: \[ -\frac{14}{24} + -\frac{5}{24} = \frac{-14 - 5}{24} = -\frac{19}{24} \] **Final Answer**: \[ -\frac{19}{24} \] --- ### (v) Add `-1/18` and `-7/27` 1. **Write the expression**: \[ -\frac{1}{18} + -\frac{7}{27} \] 2. **Find the LCM of the denominators (18 and 27)**: The LCM of 18 and 27 is 54. 3. **Convert each fraction to have the same denominator**: - For `-1/18`: \[ -\frac{1}{18} = -\frac{1 \times 3}{18 \times 3} = -\frac{3}{54} \] - For `-7/27`: \[ -\frac{7}{27} = -\frac{7 \times 2}{27 \times 2} = -\frac{14}{54} \] 4. **Add the fractions**: \[ -\frac{3}{54} + -\frac{14}{54} = \frac{-3 - 14}{54} = -\frac{17}{54} \] **Final Answer**: \[ -\frac{17}{54} \] --- ### (vi) Add `21/(-4)` and `-11/8` 1. **Write the expression**: \[ \frac{21}{-4} + -\frac{11}{8} \] 2. **Find the LCM of the denominators (4 and 8)**: The LCM of 4 and 8 is 8. 3. **Convert each fraction to have the same denominator**: - For `21/(-4)`: \[ \frac{21}{-4} = -\frac{21 \times 2}{4 \times 2} = -\frac{42}{8} \] - For `-11/8`: \[ -\frac{11}{8} = -\frac{11}{8} \] 4. **Add the fractions**: \[ -\frac{42}{8} + -\frac{11}{8} = \frac{-42 - 11}{8} = -\frac{53}{8} \] **Final Answer**: \[ -\frac{53}{8} \] ---
Promotional Banner

Topper's Solved these Questions

  • RATIONAL NUMBERS

    ICSE|Exercise EXERCISE 2D|10 Videos
  • RATIONAL NUMBERS

    ICSE|Exercise EXERCISE 2E|7 Videos
  • RATIONAL NUMBERS

    ICSE|Exercise EXERCISE 2B|4 Videos
  • RATIO AND PROPORTION

    ICSE|Exercise Challenge |1 Videos
  • REPRESENTING 3 - D IN 2- D

    ICSE|Exercise EXERCISE 20 B |1 Videos

Similar Questions

Explore conceptually related problems

Add the following rational numbers: (i) 5/11 and 4/11 , (ii) -3/8 and 5/8 , (iii) -6/13 and 8/13 , (iv) -8/15 and -7/15 , (v) -13/20 and 17/20 , (vi) -3/8 and 5/(-8)

Add the following rational numbers: (i) (-7)/(27)\ a n d(11)/(18) (ii) (31)/(-4)\ a n d(-5)/8

Add the rational numbers: (i) -3\ a n d3/5 (ii) (-7)/(27)\ a n d(11)/(18)

Add the rational numbers: (i) (-5)/(16)\ a n d7/(24) (ii) 7/(-18)\ a n d\ 8/(27)

Insert two rational numbers between (i) 6 "and" 7 (ii) 4.8 "and" 6 (iii) 2.7 "and" 6.3

Add the rational numbers: (i) 3/4a n d\ (-5)/8\ \ \ \ (ii) 5/(-9)a n d7/3

Compare the following fractions using the symbol >or (i) 6/7 and 6/(11) (ii) 3/7 and 5/7 (iii) 2/3 and 8/(12) (iv) 1/5 and 4/(15)

find three rational numbers between (i) –1 and –2 (ii) 0.1 and 0.11 (iii) 5/7 and 6/ 7 (iv) 1/4 and 1/ 5

Which of the following are negative rational numbers? (i) -16/5 , (ii) -10/(-11) , (iii) -21, (iv) 0/(-3) , (v) 17

Insert one rational number between (i) 7 "and" 8 (ii) 3.5 "and" 5 (iii) 2 "and" 3.2 (iv) 4.2 "and" 3.6 (v) (1)/(2) "and" 2