Home
Class 7
MATHS
Simplify: (i) 5/12 xx (-36), (ii) -17/...

Simplify:
(i) `5/12 xx (-36)`, (ii) `-17/18 xx 12`, (iii) `-5/6 xx 6/5`, (iv) `-14 xx 9/28`, (v) `-12/5 xx (-15)`, (vi) `-3/4` by `8/7`, (v) `-16/9` by `12/-5`, (vi) `35/(-8)` by `12/(-5)`
(vii) `-3/10` by `-40/9`, (viii) `-32/5` by `15/(-16)`, (ix) `-8/15` by `-25/32`

Text Solution

AI Generated Solution

The correct Answer is:
Let's simplify each of the given expressions step by step. ### (i) \( \frac{5}{12} \times (-36) \) 1. **Simplify the fraction and the integer:** - \( -36 \) can be rewritten as \( \frac{-36}{1} \). - Multiply the numerators: \( 5 \times (-36) = -180 \). - Multiply the denominators: \( 12 \times 1 = 12 \). - So, we have \( \frac{-180}{12} \). 2. **Simplify \( \frac{-180}{12} \):** - Divide both numerator and denominator by 12: - \( -180 \div 12 = -15 \). **Final answer:** \( -15 \) ### (ii) \( -\frac{17}{18} \times 12 \) 1. **Rewrite 12 as a fraction:** - \( 12 = \frac{12}{1} \). - Multiply the numerators: \( -17 \times 12 = -204 \). - Multiply the denominators: \( 18 \times 1 = 18 \). - So, we have \( \frac{-204}{18} \). 2. **Simplify \( \frac{-204}{18} \):** - Divide both numerator and denominator by 6: - \( -204 \div 6 = -34 \) and \( 18 \div 6 = 3 \). - Thus, \( \frac{-204}{18} = \frac{-34}{3} \). **Final answer:** \( -\frac{34}{3} \) ### (iii) \( -\frac{5}{6} \times \frac{6}{5} \) 1. **Multiply the fractions:** - Multiply the numerators: \( -5 \times 6 = -30 \). - Multiply the denominators: \( 6 \times 5 = 30 \). - So, we have \( \frac{-30}{30} \). 2. **Simplify \( \frac{-30}{30} \):** - This simplifies to \( -1 \). **Final answer:** \( -1 \) ### (iv) \( -14 \times \frac{9}{28} \) 1. **Rewrite -14 as a fraction:** - \( -14 = \frac{-14}{1} \). - Multiply the numerators: \( -14 \times 9 = -126 \). - Multiply the denominators: \( 28 \times 1 = 28 \). - So, we have \( \frac{-126}{28} \). 2. **Simplify \( \frac{-126}{28} \):** - Divide both numerator and denominator by 14: - \( -126 \div 14 = -9 \) and \( 28 \div 14 = 2 \). - Thus, \( \frac{-126}{28} = \frac{-9}{2} \). **Final answer:** \( -\frac{9}{2} \) ### (v) \( -\frac{12}{5} \times (-15) \) 1. **Rewrite -15 as a fraction:** - \( -15 = \frac{-15}{1} \). - Multiply the numerators: \( -12 \times -15 = 180 \). - Multiply the denominators: \( 5 \times 1 = 5 \). - So, we have \( \frac{180}{5} \). 2. **Simplify \( \frac{180}{5} \):** - Divide both numerator and denominator by 5: - \( 180 \div 5 = 36 \). **Final answer:** \( 36 \) ### (vi) \( -\frac{3}{4} \times \frac{8}{7} \) 1. **Multiply the fractions:** - Multiply the numerators: \( -3 \times 8 = -24 \). - Multiply the denominators: \( 4 \times 7 = 28 \). - So, we have \( \frac{-24}{28} \). 2. **Simplify \( \frac{-24}{28} \):** - Divide both numerator and denominator by 4: - \( -24 \div 4 = -6 \) and \( 28 \div 4 = 7 \). - Thus, \( \frac{-24}{28} = \frac{-6}{7} \). **Final answer:** \( -\frac{6}{7} \) ### (vii) \( -\frac{16}{9} \times \frac{12}{-5} \) 1. **Multiply the fractions:** - Multiply the numerators: \( -16 \times 12 = -192 \). - Multiply the denominators: \( 9 \times -5 = -45 \). - So, we have \( \frac{-192}{-45} \). 2. **Simplify \( \frac{-192}{-45} \):** - The negatives cancel out, so we have \( \frac{192}{45} \). - This fraction cannot be simplified further. **Final answer:** \( \frac{192}{45} \) ### (viii) \( \frac{35}{-8} \times \frac{12}{-5} \) 1. **Multiply the fractions:** - Multiply the numerators: \( 35 \times 12 = 420 \). - Multiply the denominators: \( -8 \times -5 = 40 \). - So, we have \( \frac{420}{40} \). 2. **Simplify \( \frac{420}{40} \):** - Divide both numerator and denominator by 20: - \( 420 \div 20 = 21 \) and \( 40 \div 20 = 2 \). - Thus, \( \frac{420}{40} = \frac{21}{2} \). **Final answer:** \( \frac{21}{2} \) ### (ix) \( -\frac{3}{10} \times \frac{-40}{9} \) 1. **Multiply the fractions:** - Multiply the numerators: \( -3 \times -40 = 120 \). - Multiply the denominators: \( 10 \times 9 = 90 \). - So, we have \( \frac{120}{90} \). 2. **Simplify \( \frac{120}{90} \):** - Divide both numerator and denominator by 30: - \( 120 \div 30 = 4 \) and \( 90 \div 30 = 3 \). - Thus, \( \frac{120}{90} = \frac{4}{3} \). **Final answer:** \( \frac{4}{3} \) ### (x) \( -\frac{32}{5} \times \frac{15}{-16} \) 1. **Multiply the fractions:** - Multiply the numerators: \( -32 \times 15 = -480 \). - Multiply the denominators: \( 5 \times -16 = -80 \). - So, we have \( \frac{-480}{-80} \). 2. **Simplify \( \frac{-480}{-80} \):** - The negatives cancel out, so we have \( \frac{480}{80} \). - This simplifies to \( 6 \). **Final answer:** \( 6 \) ### (xi) \( -\frac{8}{15} \times \frac{-25}{32} \) 1. **Multiply the fractions:** - Multiply the numerators: \( -8 \times -25 = 200 \). - Multiply the denominators: \( 15 \times 32 = 480 \). - So, we have \( \frac{200}{480} \). 2. **Simplify \( \frac{200}{480} \):** - Divide both numerator and denominator by 40: - \( 200 \div 40 = 5 \) and \( 480 \div 40 = 12 \). - Thus, \( \frac{200}{480} = \frac{5}{12} \). **Final answer:** \( \frac{5}{12} \) ---
Promotional Banner

Topper's Solved these Questions

  • RATIONAL NUMBERS

    ICSE|Exercise EXERCISE 2F|10 Videos
  • RATIONAL NUMBERS

    ICSE|Exercise EXERCISE 2G|9 Videos
  • RATIONAL NUMBERS

    ICSE|Exercise EXERCISE 2D|10 Videos
  • RATIO AND PROPORTION

    ICSE|Exercise Challenge |1 Videos
  • REPRESENTING 3 - D IN 2- D

    ICSE|Exercise EXERCISE 20 B |1 Videos

Similar Questions

Explore conceptually related problems

Simplify: (i) 5/12 xx (-6) , (ii) (-48) xx (-5/12)

Multiply: (i) 2/3 by 4/5 , (ii) 7/6 by 9/2 , (iii) 5/6 by 30 (iv) -3/4 by 8/7 , (v) -16/9 by 12/(-5) , (vi) 35/(-8) by 12/(-5) (vii) -3/10 by -40/9 , (viii) -32/5 by 15/(-16) , (ix) -8/15 by -25/32

Simplify: (i) 7/15 xx 5/6 , (ii) -5/24 xx 6/25 ,(iii) 7/(-18) xx -9/14 (iv) -9/5 xx -10/3 , (v) -28 xx -8/7 , (vi) 8/(-21) xx -14/3

Simplify: (i) 7/18 + 5/6 , (ii) (-9/25) + 3/5 , (iii) (-8/35) + (-2/7)

i) 2/3 xx (2) 2/3 (ii) 2/7 xx 7/9 (iii) 3/8 xx 6/4 (iv) 9/5 xx 3/5 (v) 1/3 xx (15)/8 (vi) (11)/2 xx 3/(10) (vii) 4/5 xx (12)/7

Evalaute: (i) 7/12 + -4/3 , (ii) -12/25 + -5/6 , (iii) -27/32 + (-9/16) (iv) -18 + 6/5 , (v) 26 + (-1/13) (vi) 1/25 + -5

Find the product: (i) 9/2 xx ((-7)/4) (ii) 3/(10) xx (-9) (iii) (-6)/5 xx 9/(11) (iv) 3/7 xx ((-2)/5) (v) 3/(-5) xx (-5)/3

Evaluate: (i) 5/6-7/8 , (ii) 5/12 -17/18 , (iii) 11/15 - 13/20 , (iv) -5/9 - (-2/3) , (v) 6/11 -(-3/4) , (vi) -2/3 -3/4

Simplify : (i) (12^4xx9^3 xx 4)/(6^3 xx 8^2 xx 27) (ii) 2^3 xx a^3 xx 5a^4

Find the product: (i) 3/4 xx 5/7 , (ii) 5/8 xx (-3/7) , (iii) (-2/5) xx 8