Home
Class 7
MATHS
Evalaute: (i) 7/12 + -4/3, (ii) -12/25...

Evalaute:
(i) `7/12 + -4/3`, (ii) `-12/25 + -5/6`, (iii) `-27/32 + (-9/16)`
(iv) `-18 + 6/5`, (v) `26 + (-1/13)` (vi) `1/25 + -5`

Text Solution

AI Generated Solution

The correct Answer is:
Let's evaluate each part step by step. ### (i) Evaluate \( \frac{7}{12} + -\frac{4}{3} \) 1. Rewrite the expression: \[ \frac{7}{12} - \frac{4}{3} \] 2. Find the LCM of the denominators (12 and 3), which is 12. 3. Convert \( \frac{4}{3} \) to have a denominator of 12: \[ \frac{4}{3} = \frac{4 \times 4}{3 \times 4} = \frac{16}{12} \] 4. Now substitute back into the expression: \[ \frac{7}{12} - \frac{16}{12} = \frac{7 - 16}{12} = \frac{-9}{12} \] 5. Simplify \( \frac{-9}{12} \): \[ \frac{-9 \div 3}{12 \div 3} = \frac{-3}{4} \] **Final Answer for (i):** \( \frac{-3}{4} \) --- ### (ii) Evaluate \( -\frac{12}{25} + -\frac{5}{6} \) 1. Rewrite the expression: \[ -\frac{12}{25} - \frac{5}{6} \] 2. Find the LCM of the denominators (25 and 6), which is 150. 3. Convert \( -\frac{12}{25} \) to have a denominator of 150: \[ -\frac{12}{25} = -\frac{12 \times 6}{25 \times 6} = -\frac{72}{150} \] 4. Convert \( -\frac{5}{6} \) to have a denominator of 150: \[ -\frac{5}{6} = -\frac{5 \times 25}{6 \times 25} = -\frac{125}{150} \] 5. Now substitute back into the expression: \[ -\frac{72}{150} - \frac{125}{150} = \frac{-72 - 125}{150} = \frac{-197}{150} \] 6. Simplify \( \frac{-197}{150} \) (it cannot be simplified further). **Final Answer for (ii):** \( \frac{-197}{150} \) --- ### (iii) Evaluate \( -\frac{27}{32} + (-\frac{9}{16}) \) 1. Rewrite the expression: \[ -\frac{27}{32} - \frac{9}{16} \] 2. Find the LCM of the denominators (32 and 16), which is 32. 3. Convert \( -\frac{9}{16} \) to have a denominator of 32: \[ -\frac{9}{16} = -\frac{9 \times 2}{16 \times 2} = -\frac{18}{32} \] 4. Now substitute back into the expression: \[ -\frac{27}{32} - \frac{18}{32} = \frac{-27 - 18}{32} = \frac{-45}{32} \] **Final Answer for (iii):** \( \frac{-45}{32} \) --- ### (iv) Evaluate \( -18 + \frac{6}{5} \) 1. Rewrite \( -18 \) as a fraction: \[ -18 = -\frac{18 \times 5}{1 \times 5} = -\frac{90}{5} \] 2. Now substitute back into the expression: \[ -\frac{90}{5} + \frac{6}{5} = \frac{-90 + 6}{5} = \frac{-84}{5} \] **Final Answer for (iv):** \( \frac{-84}{5} \) --- ### (v) Evaluate \( 26 + (-\frac{1}{13}) \) 1. Rewrite \( 26 \) as a fraction: \[ 26 = \frac{26 \times 13}{1 \times 13} = \frac{338}{13} \] 2. Now substitute back into the expression: \[ \frac{338}{13} - \frac{1}{13} = \frac{338 - 1}{13} = \frac{337}{13} \] **Final Answer for (v):** \( \frac{337}{13} \) --- ### (vi) Evaluate \( \frac{1}{25} + -5 \) 1. Rewrite \( -5 \) as a fraction: \[ -5 = -\frac{5 \times 25}{1 \times 25} = -\frac{125}{25} \] 2. Now substitute back into the expression: \[ \frac{1}{25} - \frac{125}{25} = \frac{1 - 125}{25} = \frac{-124}{25} \] **Final Answer for (vi):** \( \frac{-124}{25} \) ---
Promotional Banner

Topper's Solved these Questions

  • RATIONAL NUMBERS

    ICSE|Exercise EXERCISE 2G|9 Videos
  • RATIONAL NUMBERS

    ICSE|Exercise EXAMPLES |61 Videos
  • RATIONAL NUMBERS

    ICSE|Exercise EXERCISE 2E|7 Videos
  • RATIO AND PROPORTION

    ICSE|Exercise Challenge |1 Videos
  • REPRESENTING 3 - D IN 2- D

    ICSE|Exercise EXERCISE 20 B |1 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (i) 2/(-3) + -4/9 , (ii) =1/2 + -3/4 , (iii) 7/-9 + -5/6 (iv) 2 + -3/4 , (v) 3 + -5/6 , (vi) -4 + 2/3

Simplify: (i) 7/18 + 5/6 , (ii) (-9/25) + 3/5 , (iii) (-8/35) + (-2/7)

Simplify: (i) 5/12 xx (-36) , (ii) -17/18 xx 12 , (iii) -5/6 xx 6/5 , (iv) -14 xx 9/28 , (v) -12/5 xx (-15) , (vi) -3/4 by 8/7 , (v) -16/9 by 12/-5 , (vi) 35/(-8) by 12/(-5) (vii) -3/10 by -40/9 , (viii) -32/5 by 15/(-16) , (ix) -8/15 by -25/32

Evaluate: (i) 5/6-7/8 , (ii) 5/12 -17/18 , (iii) 11/15 - 13/20 , (iv) -5/9 - (-2/3) , (v) 6/11 -(-3/4) , (vi) -2/3 -3/4

Find the multiplicative inverse (or reciprocal) of each of the following rational numbers : (i) 6/25 , (ii) 15/11 , (iii) -8/9 , (iv) -23/16 , (v) 12, (vi) 1/10 , (vii) -6 , (viii) -1 , (ix) -1/5 , (x) -7/(-9)

Simplify: (i) 7/15 xx 5/6 , (ii) -5/24 xx 6/25 ,(iii) 7/(-18) xx -9/14 (iv) -9/5 xx -10/3 , (v) -28 xx -8/7 , (vi) 8/(-21) xx -14/3

Find the value of: (i) (-4) -: 2/3 (ii) (-3)/5 -: 2 (iii) (-4)/5 -: (-3) (iv) (-1)/8 -: 3/4 (v) (-2)/(13) -: 1/7 (vi) (-7)/(12) -: ((-2)/(13)) (vii) 3/(13) -: ((-4)/(65))

Add the following rational numbers: (i) -2/3 and 3/4 , (ii) -4/9 and 5/6 , (iii) -5/18 and 11/27 (iv) -7/12 and -5/24 , (v) -1/18 and -7/27 , (vi) 21/(-4) and -11/8

Which of the two rational numbers is greater in each of the following pairs? (i) 3/-7 or 1/7 , (ii) 11/(-18) or -5/18 , (iii) 7/10 or -9/10 (iv) 0 or -3/4 , (v) 1/12 or 0, (vi) 18/(-19) or 0 (vii) 7/8 or 11/16 , (viii) 11/-12 or -10/11 , (ix) -13/5 or -4 (x) 17/(-6) or -13/4 , (xi) 7/(-9) or -5/8 , (xii) -3/(-8) or 5/9

Evaluate: -3/8 + 5/8 + 7/8 , (ii) 11/3 + -5/3 + -2/3 , (iii) -1+ 2/(-3) + 5/6 , (iv) 7/26 + (-11)/13 + 2 , (v) 3+(-7/8) + -3/4 , (vi) -13/8 + 7/16 + (-3)/4