Home
Class 7
MATHS
Fill in the blanks: (i) (………) +(-5/6)=...

Fill in the blanks:
(i) (………) `+(-5/6)=-30`
(ii) (………….) `+(-8) = (-3/4)`
(iii) `(-15/14) + (…………) = 5/2`
(iv) `(-16) + (………..) = 6`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve each part step by step. ### (i) Fill in the blank: \( (………) + (-\frac{5}{6}) = -30 \) 1. Let the blank be represented by \( x \). So we have: \[ x + (-\frac{5}{6}) = -30 \] 2. To isolate \( x \), we can add \( \frac{5}{6} \) to both sides: \[ x = -30 + \frac{5}{6} \] 3. To perform this addition, we need a common denominator. The common denominator of 1 and 6 is 6. We can rewrite -30 as: \[ -30 = -\frac{180}{6} \] 4. Now, we can add: \[ x = -\frac{180}{6} + \frac{5}{6} = -\frac{180 - 5}{6} = -\frac{175}{6} \] **Final answer for (i)**: \( -\frac{175}{6} \) ### (ii) Fill in the blank: \( (………….) + (-8) = -\frac{3}{4} \) 1. Let the blank be \( x \): \[ x + (-8) = -\frac{3}{4} \] 2. To isolate \( x \), we can add 8 to both sides: \[ x = -\frac{3}{4} + 8 \] 3. Rewrite 8 with a common denominator of 4: \[ 8 = \frac{32}{4} \] 4. Now, we can add: \[ x = -\frac{3}{4} + \frac{32}{4} = \frac{32 - 3}{4} = \frac{29}{4} \] **Final answer for (ii)**: \( \frac{29}{4} \) ### (iii) Fill in the blank: \( (-\frac{15}{14}) + (…………) = \frac{5}{2} \) 1. Let the blank be \( x \): \[ -\frac{15}{14} + x = \frac{5}{2} \] 2. To isolate \( x \), we can add \( \frac{15}{14} \) to both sides: \[ x = \frac{5}{2} + \frac{15}{14} \] 3. We need a common denominator to add these fractions. The common denominator of 2 and 14 is 14. Rewrite \( \frac{5}{2} \): \[ \frac{5}{2} = \frac{35}{14} \] 4. Now, we can add: \[ x = \frac{35}{14} + \frac{15}{14} = \frac{35 + 15}{14} = \frac{50}{14} \] 5. Simplify \( \frac{50}{14} \): \[ x = \frac{25}{7} \] **Final answer for (iii)**: \( \frac{25}{7} \) ### (iv) Fill in the blank: \( (-16) + (………..) = 6 \) 1. Let the blank be \( x \): \[ -16 + x = 6 \] 2. To isolate \( x \), we can add 16 to both sides: \[ x = 6 + 16 \] 3. Perform the addition: \[ x = 22 \] **Final answer for (iv)**: \( 22 \) ---
Promotional Banner

Topper's Solved these Questions

  • RATIONAL NUMBERS

    ICSE|Exercise EXERCISE 2G|9 Videos
  • RATIONAL NUMBERS

    ICSE|Exercise EXAMPLES |61 Videos
  • RATIONAL NUMBERS

    ICSE|Exercise EXERCISE 2E|7 Videos
  • RATIO AND PROPORTION

    ICSE|Exercise Challenge |1 Videos
  • REPRESENTING 3 - D IN 2- D

    ICSE|Exercise EXERCISE 20 B |1 Videos

Similar Questions

Explore conceptually related problems

.Fill in the blanks. (a) ((2)/(5)+(-6)/(9))+...=(2)/(5)+(-(3)/(7))

Fill in the blanks : (-4)/(13)-(-3)/(26)= ... (ii) (-9)/(14)+......=-1 (iii) (-7)/9+....=3 (iv) ..... +(15)/(23)=4

Find (i) 1/2 of (ii) (2) 3/4 (iii) (4) 2/9 (iv) 5/8 of (v) (3) 5/6 (ii) (9) 2/3

Find the cube of : (i) 2 2/5 (ii) 3 1/4 (iii) 0. 3 (iv) 1. 5

Simplify: (i) 7/18 + 5/6 , (ii) (-9/25) + 3/5 , (iii) (-8/35) + (-2/7)

Write the additive inverse of : (i) (3)/(8) (ii) (-8)/(15) (iii) (4)/(-13) (v) (-6)/(-11)

Find : (i) 9^(3/2) (ii) 32^(2/5) (iii) 16^(3/4) (iv) 125^((-1)/3)

Evaluate: (i) 2/(-3) + -4/9 , (ii) =1/2 + -3/4 , (iii) 7/-9 + -5/6 (iv) 2 + -3/4 , (v) 3 + -5/6 , (vi) -4 + 2/3

Find the slopes of the lines passing through the following points : (i) (1,5) and (3,2) (ii) (-4,3) and (-6,3) (iii) (1,3) and (1,4) (iv) (2,-1) and (3,2)

Find the value of x such that: (i) -2/3=14/x , (ii) 8/-3 = x/6 , (iii) 5/9 = x/(-27) (iv) 11/6 = -55/x , (v) 15/x =-3 , (vi) -36/x =2