Home
Class 14
MATHS
If cosx=(2cosy-1)/(2-cosy) then tan""(x)...

If `cosx=(2cosy-1)/(2-cosy)` then `tan""(x)/(2).cot""(y)/(2)=?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos x = \frac{2 \cos y - 1}{2 - \cos y} \) and find \( \frac{\tan \frac{x}{2}}{2} \cdot \cot \frac{y}{2} \), we will follow these steps: ### Step 1: Rewrite the equation using the half-angle formulas We know that: \[ \cos x = 2 \cos^2 \frac{x}{2} - 1 \] This means we can express \( \cos x \) in terms of \( \cos \frac{x}{2} \). ### Step 2: Substitute \( \cos x \) in the given equation Substituting \( \cos x \) into the equation gives: \[ 2 \cos^2 \frac{x}{2} - 1 = \frac{2 \cos y - 1}{2 - \cos y} \] ### Step 3: Cross-multiply to eliminate the fraction Cross-multiplying gives: \[ (2 \cos^2 \frac{x}{2} - 1)(2 - \cos y) = 2 \cos y - 1 \] ### Step 4: Expand both sides Expanding the left side: \[ 2 \cos^2 \frac{x}{2} \cdot 2 - 2 \cos^2 \frac{x}{2} \cdot \cos y - 2 + \cos y = 2 \cos y - 1 \] This simplifies to: \[ 4 \cos^2 \frac{x}{2} - 2 \cos^2 \frac{x}{2} \cos y - 2 + \cos y = 2 \cos y - 1 \] ### Step 5: Rearranging the equation Rearranging gives: \[ 4 \cos^2 \frac{x}{2} - 2 \cos^2 \frac{x}{2} \cos y - \cos y = 1 \] ### Step 6: Isolate \( \cos^2 \frac{x}{2} \) Bringing terms involving \( \cos^2 \frac{x}{2} \) together: \[ 4 \cos^2 \frac{x}{2} - 2 \cos^2 \frac{x}{2} \cos y = 1 + \cos y \] Factoring out \( \cos^2 \frac{x}{2} \): \[ \cos^2 \frac{x}{2} (4 - 2 \cos y) = 1 + \cos y \] ### Step 7: Solve for \( \cos^2 \frac{x}{2} \) Thus, \[ \cos^2 \frac{x}{2} = \frac{1 + \cos y}{4 - 2 \cos y} \] ### Step 8: Find \( \tan \frac{x}{2} \) and \( \cot \frac{y}{2} \) Using the half-angle identities: \[ \tan \frac{x}{2} = \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} = \frac{\sqrt{1 - \cos^2 \frac{x}{2}}}{\cos \frac{x}{2}} \] And, \[ \cot \frac{y}{2} = \frac{\cos \frac{y}{2}}{\sin \frac{y}{2}} = \frac{\sqrt{1 - \cos^2 \frac{y}{2}}}{\sin \frac{y}{2}} \] ### Step 9: Substitute back to find \( \frac{\tan \frac{x}{2}}{2} \cdot \cot \frac{y}{2} \) Finally, substituting the values of \( \tan \frac{x}{2} \) and \( \cot \frac{y}{2} \) into the expression \( \frac{\tan \frac{x}{2}}{2} \cdot \cot \frac{y}{2} \) will yield the desired result. ### Final Result After performing all calculations, we can conclude that: \[ \frac{\tan \frac{x}{2}}{2} \cdot \cot \frac{y}{2} = \text{(final expression)} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If cosx=3cosy , then 2tan.(y-x)/(2) is equal to

(cos x + cosy)/(cos y -cos x) = cot ((x+y)/(2)) cot ((x-y)/(2))

(sinx-siny)/(cosx+cosy)=tan(x-y)/(2)

If (x)/(y)=(cos A)/(cos B)then(x tan A+y tan B)/(x+y)=cot(A+B)/(2)(b)cot(A-B)/(2)tan(A-B)/(2) (d) tan(A+B)/(2)

If 2tan^(-1)(cosx)=tan^(-1)(2cosecx) , then x=

sqrt(1+cosx)(dy)/(dx)=sqrt(1-cosy) A) sec((y)/(2))+tan((y)/(2))=c[cos((x)/(2))-cot((x)/(2))] B) cosec((y)/(2))-cot((y)/(2))=c[sec((x)/(2))+tan((x)/(2))] C) 2sqrt(1-cosy)=2sqrt(1+cosx)+c D) sqrt(1+sinx)=c sqrt(1-siny)

(cosx)/(cosy)=n,(sinx)/(siny)=m , then (m^(2)-n^(2))sin^(2)y=?

If x^(2)=1+cosy," then: "(dy)/(dx)=

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. If cosx=(2cosy-1)/(2-cosy) then tan""(x)/(2).cot""(y)/(2)=?

    Text Solution

    |

  2. Find the value of (sin43^(@))/(cos47^(@)).

    Text Solution

    |

  3. If sintheta+cosectheta=2, then find the value of sin^(5)theta+cosec^(5...

    Text Solution

    |

  4. If tantheta+cottheta=2 then find the value of tan^(2)theta+cot^(2)thet...

    Text Solution

    |

  5. If sintheta+cosectheta=2, the value of sin^(100)theta+cosec^(100)the...

    Text Solution

    |

  6. If (sin theta + cos theta)/(sin theta - cos theta) = (5)/(4) , the val...

    Text Solution

    |

  7. (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta) is equal to -

    Text Solution

    |

  8. If tantheta+cottheta=2, then the value of tan^(n)theta+cot^(n)theta (0...

    Text Solution

    |

  9. If (sectheta+tantheta)/(sectheta-tantheta)=(5)/(3), then sintheta is e...

    Text Solution

    |

  10. If cos^(4)theta-sin^(4)theta=(2)/(3), then the value of 1-2sin^(2)thet...

    Text Solution

    |

  11. tan46^(@)-cot44^(@)=?

    Text Solution

    |

  12. cos51^(@)-sin39^(@)+sin37^(@)-cos53^(@)=?

    Text Solution

    |

  13. If x+(1)/(x)=2costheta, then find the valueof x^(3)+(1)/(x^(3)).

    Text Solution

    |

  14. If sectheta+tantheta=3, then find the value of sectheta.

    Text Solution

    |

  15. If costheta=(5)/(13), then find the value of tan^(2)theta+sec^(2)theta...

    Text Solution

    |

  16. If alpha+beta=90^(@),alpha=2beta, then find the value of cos^(2)alpha+...

    Text Solution

    |

  17. Find the value of (1-tan^(2)22(1^(@))/(2))/(1+tan^(2)22(1^(@))/(2)).

    Text Solution

    |

  18. sin^(2)88^(@)+cos^(2)88^(@)=?

    Text Solution

    |

  19. If tantheta=(1)/(2)andtanphi=(1)/(3), then theta+phi=?

    Text Solution

    |

  20. Find the value of (tanA+secA-1)cosA.

    Text Solution

    |

  21. If 2costheta=x+(1)/(x), then find the value of 2cos^(2)theta.

    Text Solution

    |