Home
Class 14
MATHS
Find minimum value of 4cos^(2)theta+9sec...

Find minimum value of `4cos^(2)theta+9sec^(2)theta`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \(4\cos^2\theta + 9\sec^2\theta\), we will use the concept of the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution: 1. **Rewrite the Expression**: We start with the expression: \[ y = 4\cos^2\theta + 9\sec^2\theta \] Recall that \(\sec^2\theta = \frac{1}{\cos^2\theta}\). Therefore, we can rewrite the expression as: \[ y = 4\cos^2\theta + 9\frac{1}{\cos^2\theta} \] 2. **Apply AM-GM Inequality**: By the AM-GM inequality, for any non-negative \(a\) and \(b\): \[ \frac{a + b}{2} \geq \sqrt{ab} \] We can apply this to our expression. Let: \[ a = 4\cos^2\theta \quad \text{and} \quad b = 9\sec^2\theta \] Then: \[ \frac{4\cos^2\theta + 9\sec^2\theta}{2} \geq \sqrt{4\cos^2\theta \cdot 9\sec^2\theta} \] 3. **Calculate the Geometric Mean**: Calculate the right-hand side: \[ \sqrt{4\cos^2\theta \cdot 9\sec^2\theta} = \sqrt{36} = 6 \] Thus, we have: \[ \frac{4\cos^2\theta + 9\sec^2\theta}{2} \geq 6 \] 4. **Multiply by 2**: Multiplying both sides by 2 gives: \[ 4\cos^2\theta + 9\sec^2\theta \geq 12 \] 5. **Conclusion**: The minimum value of \(4\cos^2\theta + 9\sec^2\theta\) is therefore: \[ \text{Minimum value} = 12 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

The minimum value of cos^(2)theta+sec^(2)theta is

Find minimum value of 4sec^(2)theta+9cos^(2)theta .

Find minimum value of sin^(2)theta+cosec^(2)theta+cos^(2)theta+sec^(2)theta+tan^(2)theta+cot^(2)theta=?

Find the minimum value of sec^(2)theta+csc^(2)theta-4

Find maximum and minimum value of cos^(2)theta+sin^(4)theta .

Minimum value of sec^(2)theta+4cos ec^(2)theta is

Minimum value of sec^(2)theta+4cos ec^(2)theta is

Find the minimum value of sec^(2)theta+cos ec^(2)theta-4

Find the minimum value of sin^(2)theta+cos^(2)theta+sec^(2)theta+cos ec^(2)theta+tan^(2)theta+cot^(2)theta

Minimum value of 9sec^(2)theta+4cos ec^(2)theta+7