Home
Class 14
MATHS
Find min^(m) value of sin^(2)alpha +co...

Find `min^(m)` value of
`sin^(2)alpha +cosec^(2)alpha+cos^(2)beta+sec^(2)beta+tan^(2)gamma+cot^(2)gamma=?`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \( \sin^2 \alpha + \csc^2 \alpha + \cos^2 \beta + \sec^2 \beta + \tan^2 \gamma + \cot^2 \gamma \), we will use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution: 1. **Identify the Terms**: The expression consists of six terms: \[ \sin^2 \alpha, \quad \csc^2 \alpha, \quad \cos^2 \beta, \quad \sec^2 \beta, \quad \tan^2 \gamma, \quad \cot^2 \gamma \] 2. **Apply AM-GM Inequality**: According to the AM-GM inequality, for any non-negative real numbers \( a_1, a_2, \ldots, a_n \): \[ \frac{a_1 + a_2 + \ldots + a_n}{n} \geq \sqrt[n]{a_1 \cdot a_2 \cdot \ldots \cdot a_n} \] Here, we have six terms, so: \[ \frac{\sin^2 \alpha + \csc^2 \alpha + \cos^2 \beta + \sec^2 \beta + \tan^2 \gamma + \cot^2 \gamma}{6} \geq \sqrt[6]{\sin^2 \alpha \cdot \csc^2 \alpha \cdot \cos^2 \beta \cdot \sec^2 \beta \cdot \tan^2 \gamma \cdot \cot^2 \gamma} \] 3. **Calculate the Product**: We know: \[ \csc^2 \alpha = \frac{1}{\sin^2 \alpha}, \quad \sec^2 \beta = \frac{1}{\cos^2 \beta}, \quad \tan^2 \gamma = \frac{\sin^2 \gamma}{\cos^2 \gamma}, \quad \cot^2 \gamma = \frac{\cos^2 \gamma}{\sin^2 \gamma} \] Therefore, the product becomes: \[ \sin^2 \alpha \cdot \csc^2 \alpha = 1, \quad \cos^2 \beta \cdot \sec^2 \beta = 1, \quad \tan^2 \gamma \cdot \cot^2 \gamma = 1 \] Thus: \[ \sin^2 \alpha \cdot \csc^2 \alpha \cdot \cos^2 \beta \cdot \sec^2 \beta \cdot \tan^2 \gamma \cdot \cot^2 \gamma = 1 \cdot 1 \cdot 1 = 1 \] 4. **Substitute Back into AM-GM**: Now substituting back into the AM-GM inequality: \[ \frac{\sin^2 \alpha + \csc^2 \alpha + \cos^2 \beta + \sec^2 \beta + \tan^2 \gamma + \cot^2 \gamma}{6} \geq \sqrt[6]{1} = 1 \] Therefore: \[ \sin^2 \alpha + \csc^2 \alpha + \cos^2 \beta + \sec^2 \beta + \tan^2 \gamma + \cot^2 \gamma \geq 6 \] 5. **Conclusion**: The minimum value of the expression \( \sin^2 \alpha + \csc^2 \alpha + \cos^2 \beta + \sec^2 \beta + \tan^2 \gamma + \cot^2 \gamma \) is \( 6 \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If 2tan^(2)alpha tan^(2)beta tan^(2)gamma+tan^(2)alpha tan^(2)beta+tan^(2)beta tan^(2)gamma+tan^(2)gamma tan^(2)alpha=1 prove that sin^(2)alpha+sin^(2)beta+sin^(2)gamma=1

2tan ^ (2) alpha tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) alpha tan ^ (2) beta + tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) gamma tan ^ (2) alpha find the value of sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma

If cos alpha + cos beta+ cos gamma = 0 = sin alpha + sin beta+sin gamma show that sin^(2)alpha + sin^(2) beta + sin^(2) gamma =cos^(2)alpha +cos^(2) beta + cos^(2) gamma =3/2

If tan ^ (2) alpha tan ^ (2) beta + tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) gamma tan ^ (2) alpha + 2tan ^ (2) alpha tan ^ (2 ) beta tan ^ (2) gamma = 1 then sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma =

Suppose alpha ,beta , gamma in R are such that sin alpha, sin beta , sin gamma ne 0 and Delta = |{:(sin^(2) alpha , sin alpha cos alpha , cos^(2) alpha),(sin^(2) beta , sin beta cos beta , cos^(2) beta),(sin^(2) gamma , sin gamma cos gamma , cos^(2) gamma):}| then Delta cannot exceed

If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + sin gamma then (a) sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma = (3) / ( 2) (b) sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma = (3) / (4) (c) cos ^ (alpha) + cos ^ (2) beta + cos ^ (2) gamma = (3) / (2) (d) cos ^ (2) alpha + cos2 beta + cos2 gamma = -1

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. Find min^(m) value of sin^(2)alpha +cosec^(2)alpha+cos^(2)beta+sec^(...

    Text Solution

    |

  2. Find the value of (sin43^(@))/(cos47^(@)).

    Text Solution

    |

  3. If sintheta+cosectheta=2, then find the value of sin^(5)theta+cosec^(5...

    Text Solution

    |

  4. If tantheta+cottheta=2 then find the value of tan^(2)theta+cot^(2)thet...

    Text Solution

    |

  5. If sintheta+cosectheta=2, the value of sin^(100)theta+cosec^(100)the...

    Text Solution

    |

  6. If (sin theta + cos theta)/(sin theta - cos theta) = (5)/(4) , the val...

    Text Solution

    |

  7. (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta) is equal to -

    Text Solution

    |

  8. If tantheta+cottheta=2, then the value of tan^(n)theta+cot^(n)theta (0...

    Text Solution

    |

  9. If (sectheta+tantheta)/(sectheta-tantheta)=(5)/(3), then sintheta is e...

    Text Solution

    |

  10. If cos^(4)theta-sin^(4)theta=(2)/(3), then the value of 1-2sin^(2)thet...

    Text Solution

    |

  11. tan46^(@)-cot44^(@)=?

    Text Solution

    |

  12. cos51^(@)-sin39^(@)+sin37^(@)-cos53^(@)=?

    Text Solution

    |

  13. If x+(1)/(x)=2costheta, then find the valueof x^(3)+(1)/(x^(3)).

    Text Solution

    |

  14. If sectheta+tantheta=3, then find the value of sectheta.

    Text Solution

    |

  15. If costheta=(5)/(13), then find the value of tan^(2)theta+sec^(2)theta...

    Text Solution

    |

  16. If alpha+beta=90^(@),alpha=2beta, then find the value of cos^(2)alpha+...

    Text Solution

    |

  17. Find the value of (1-tan^(2)22(1^(@))/(2))/(1+tan^(2)22(1^(@))/(2)).

    Text Solution

    |

  18. sin^(2)88^(@)+cos^(2)88^(@)=?

    Text Solution

    |

  19. If tantheta=(1)/(2)andtanphi=(1)/(3), then theta+phi=?

    Text Solution

    |

  20. Find the value of (tanA+secA-1)cosA.

    Text Solution

    |

  21. If 2costheta=x+(1)/(x), then find the value of 2cos^(2)theta.

    Text Solution

    |