Home
Class 14
MATHS
If alpha+beta=90^(@),alpha=2beta, then f...

If `alpha+beta=90^(@),alpha=2beta`, then find the value of `cos^(2)alpha+sin^(2)beta`.

A

`(1)/(2)`

B

`(3)/(4)`

C

`(3)/(2)`

D

`(4)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos^2 \alpha + \sin^2 \beta \) given that \( \alpha + \beta = 90^\circ \) and \( \alpha = 2\beta \). ### Step-by-Step Solution: 1. **Set up the equations**: We have two equations: \[ \alpha + \beta = 90^\circ \quad \text{(1)} \] \[ \alpha = 2\beta \quad \text{(2)} \] 2. **Substitute equation (2) into equation (1)**: Replace \( \alpha \) in equation (1) with \( 2\beta \): \[ 2\beta + \beta = 90^\circ \] This simplifies to: \[ 3\beta = 90^\circ \] 3. **Solve for \( \beta \)**: Divide both sides by 3: \[ \beta = 30^\circ \] 4. **Find \( \alpha \)**: Use equation (2) to find \( \alpha \): \[ \alpha = 2\beta = 2 \times 30^\circ = 60^\circ \] 5. **Calculate \( \cos^2 \alpha \) and \( \sin^2 \beta \)**: - First, find \( \cos^2 \alpha \): \[ \cos^2 \alpha = \cos^2 60^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] - Next, find \( \sin^2 \beta \): \[ \sin^2 \beta = \sin^2 30^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] 6. **Add \( \cos^2 \alpha \) and \( \sin^2 \beta \)**: \[ \cos^2 \alpha + \sin^2 \beta = \frac{1}{4} + \frac{1}{4} = \frac{2}{4} = \frac{1}{2} \] ### Final Answer: The value of \( \cos^2 \alpha + \sin^2 \beta \) is \( \frac{1}{2} \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If alpha+beta=90^@ , and alpha=2 beta , then the value of 3 cos^2 alpha-2 sin^2 beta is: यदि alpha+beta=90^@ , और alpha=2 beta , तो 3 cos^2 alpha-2 sin^2 beta का मान ज्ञात करें:

If sin alpha+sin beta=2 then find the value of cos^(2)alpha+cos^(2)beta

Knowledge Check

  • If alpha+beta=90^@ and alpha=2beta , then the value of 3cos^2alpha-2sin^2beta is equal to:

    A
    `3/4`
    B
    `1/4`
    C
    `4/3`
    D
    `3/2`
  • If sin alpha + sin beta =2 , then find the value of cos^(2)alpha+cos^(2)beta .

    A
    0
    B
    1
    C
    2
    D
    3
  • If alpha + beta = 90^@ and alpha: beta = 2: 1 , then the value of sin alpha : sin beta is

    A
    `sqrt3 : 1`
    B
    `2 : 1`
    C
    `1 : 1`
    D
    `sqrt2:1`
  • Similar Questions

    Explore conceptually related problems

    If alpha and beta are two positive acute angles satisfying alpha-beta=15^(@) and sin alpha=cos2 beta then find the value of alpha+beta

    If sin alpha cos beta=-(1)/(2) then find the range of values of cos alpha sin(beta

    If sin alpha cos beta=-(1)/(2) then find the range of values of cos alpha sin beta

    Ifsin^(4)alpha+cos^(4)beta+2=4sin alpha cos beta,0<=alpha,beta<=(pi)/(2) then find the value of (sin alpha+cos beta)

    If cos^(2)alpha-sin^(2)alpha=tan^(2)beta , then the value of cos^(2)beta-sin^(2)beta is