Home
Class 14
MATHS
Find the value of (sectheta-costheta)^...

Find the value of
`(sectheta-costheta)^(2)+(cosectheta-sintheta)^(2)-(cottheta-tantheta)^(2)`.

A

0

B

`(1)/(2)`

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sec \theta - \cos \theta)^2 + (\csc \theta - \sin \theta)^2 - (\cot \theta - \tan \theta)^2\), we can break it down step by step. ### Step 1: Expand the first term \((\sec \theta - \cos \theta)^2\) Using the identity \(\sec \theta = \frac{1}{\cos \theta}\), we have: \[ (\sec \theta - \cos \theta)^2 = \left(\frac{1}{\cos \theta} - \cos \theta\right)^2 \] This can be simplified as: \[ \left(\frac{1 - \cos^2 \theta}{\cos \theta}\right)^2 = \left(\frac{\sin^2 \theta}{\cos \theta}\right)^2 = \frac{\sin^4 \theta}{\cos^2 \theta} \] ### Step 2: Expand the second term \((\csc \theta - \sin \theta)^2\) Using the identity \(\csc \theta = \frac{1}{\sin \theta}\), we have: \[ (\csc \theta - \sin \theta)^2 = \left(\frac{1}{\sin \theta} - \sin \theta\right)^2 \] This can be simplified as: \[ \left(\frac{1 - \sin^2 \theta}{\sin \theta}\right)^2 = \left(\frac{\cos^2 \theta}{\sin \theta}\right)^2 = \frac{\cos^4 \theta}{\sin^2 \theta} \] ### Step 3: Expand the third term \((\cot \theta - \tan \theta)^2\) Using the identities \(\cot \theta = \frac{\cos \theta}{\sin \theta}\) and \(\tan \theta = \frac{\sin \theta}{\cos \theta}\), we have: \[ (\cot \theta - \tan \theta)^2 = \left(\frac{\cos \theta}{\sin \theta} - \frac{\sin \theta}{\cos \theta}\right)^2 \] This can be simplified as: \[ \left(\frac{\cos^2 \theta - \sin^2 \theta}{\sin \theta \cos \theta}\right)^2 = \frac{(\cos^2 \theta - \sin^2 \theta)^2}{\sin^2 \theta \cos^2 \theta} \] ### Step 4: Combine all the terms Now we can combine all the terms: \[ \frac{\sin^4 \theta}{\cos^2 \theta} + \frac{\cos^4 \theta}{\sin^2 \theta} - \frac{(\cos^2 \theta - \sin^2 \theta)^2}{\sin^2 \theta \cos^2 \theta} \] ### Step 5: Simplify the expression To simplify this, we can find a common denominator, which is \(\sin^2 \theta \cos^2 \theta\): \[ \frac{\sin^4 \theta \sin^2 \theta + \cos^4 \theta \cos^2 \theta - (\cos^2 \theta - \sin^2 \theta)^2}{\sin^2 \theta \cos^2 \theta} \] ### Step 6: Recognize the identity Notice that \((\cos^2 \theta - \sin^2 \theta)^2 = \cos^4 \theta - 2\cos^2 \theta \sin^2 \theta + \sin^4 \theta\). Thus, the numerator simplifies to: \[ \sin^4 \theta + \cos^4 \theta + 2\cos^2 \theta \sin^2 \theta - (\cos^4 \theta - 2\cos^2 \theta \sin^2 \theta + \sin^4 \theta) \] This results in: \[ 4\cos^2 \theta \sin^2 \theta \] ### Final Step: Evaluate the expression Thus, the expression simplifies to: \[ \frac{4\cos^2 \theta \sin^2 \theta}{\sin^2 \theta \cos^2 \theta} = 4 \] ### Conclusion The value of the expression is \(4\).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

What is the value of (sectheta-costheta)("cosec"theta-sintheta)(cottheta+tantheta) ?

Find the minimum value of (sintheta+cosectheta)^(2)+(costheta+sectheta)^(2)

(sintheta)/(cottheta+cosectheta)-(sintheta)/(cottheta-cosectheta)=?

If theta epsilon (0, pi/2) then the value of |((sintheta+cosectheta)^2, (sintheta- cosectheta)^2,1 ),((costheta+sectheta)^2, (costheta-sectheta)^2, 1),((tantheta+cottheta)^2, (tantheta-cottheta)^2, 1)|= (A) sintheta+costhetas+tantheta (B) 1 (C) 0 (D) 4

(csctheta-sintheta")(sectheta-costheta)(tantheta+cottheta)=

(1-costheta)/(1+costheta)=((1-costheta)/(sintheta))^2=(cosectheta-cottheta)^2

(cosectheta-sintheta)(sectheta-costheta)(tantheta+cottheta)=?

Simplify (sintheta+sectheta)^(2)+(costheta+cosectheta)^(2) .

Prove that : (sectheta-tantheta)^(2)=(1-sintheta)/(1+sintheta)

Find the value of cottheta*sintheta*sectheta .

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. Find the value of sintheta in terms of sectheta.

    Text Solution

    |

  2. If sinalphasec(30^(@)+alpha)=1(0^(@)ltalphalt60^(@)), then find the va...

    Text Solution

    |

  3. Find the value of (sectheta-costheta)^(2)+(cosectheta-sintheta)^(2)-...

    Text Solution

    |

  4. If (sintheta+costheta)/(sintheta-costheta)=3, then find the value of s...

    Text Solution

    |

  5. If sin 17^@ = x/y,then the value of sec 17^@ - sin 73^@ is

    Text Solution

    |

  6. If cos43^(@)=(x)/(sqrt(x^(2)+y^(2))), then the value of tan47^(@) is.

    Text Solution

    |

  7. If tantheta=(x)/(y), then (xsintheta+ycostheta)/(xsintheta-ycostheta) ...

    Text Solution

    |

  8. Find the value of ((1)/(costheta)+(1)/(cottheta))((1)/(costheta)-(1)/(...

    Text Solution

    |

  9. If sin61^(@)=(a)/(sqrt(a^(2)+b^(2))), then find the value of tan61^(@)...

    Text Solution

    |

  10. If (cos^(2)theta)/(cot^(2)theta-cos^(2)theta)=3and0^(@)ltthetalt90^(@)...

    Text Solution

    |

  11. (2sin68^(@))/(cos22^(@))-(2cot15^(@))/(5tan75^(@))-(3tan45^(@).tan20^(...

    Text Solution

    |

  12. If cosec39^(@)=x, then the value of (1)/(cosec^(2)51^(@))+sin^(2)39^...

    Text Solution

    |

  13. Find the value of (1)/((1+tan^(2)theta))+(1)/((1+cot^(2)theta))

    Text Solution

    |

  14. The value of (cos^(3)20^(@)-cos^(3)70^(@))/(sin^(3)70^(@)-sin^(3)20^(@...

    Text Solution

    |

  15. The value of (cos^(n)38^(@)-cot^(n)52^(@))/(sin^(n)52^(@)-tan^(n)38^(@...

    Text Solution

    |

  16. The value of (cot^(n)29^(@)-cot^(n)61^(@))/(tan^(n)61^(@)-tan^(n)29^(@...

    Text Solution

    |

  17. If x=tan15^(@), then find the value of x^(2)+(1)/(x^(2)).

    Text Solution

    |

  18. If x=cot75^(@), then find the value of sqrt(x)+(1)/(sqrt(x)).

    Text Solution

    |

  19. If tan(A+B)=(1)/(2),tan(A-B)=(1)/(3), then find the value of tan2A.

    Text Solution

    |

  20. If tan(A+2B)=(1)/(2),tan2(A-B)=(1)/(3), then find the value of angleA.

    Text Solution

    |