Home
Class 14
MATHS
If (sintheta+costheta)/(sintheta-costhet...

If `(sintheta+costheta)/(sintheta-costheta)=3`, then find the value of `sin^(4)theta-cos^(4)theta`.

A

a) `(1)/(5)`

B

b) `(2)/(5)`

C

c) `(3)/(5)`

D

d) `(4)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{\sin \theta + \cos \theta}{\sin \theta - \cos \theta} = 3\) and find the value of \(\sin^4 \theta - \cos^4 \theta\), we can follow these steps: ### Step 1: Rewrite the given equation We start with the equation: \[ \frac{\sin \theta + \cos \theta}{\sin \theta - \cos \theta} = 3 \] ### Step 2: Cross-multiply Cross-multiplying gives us: \[ \sin \theta + \cos \theta = 3(\sin \theta - \cos \theta) \] Expanding the right side: \[ \sin \theta + \cos \theta = 3\sin \theta - 3\cos \theta \] ### Step 3: Rearrange the equation Rearranging the terms leads to: \[ \sin \theta + \cos \theta - 3\sin \theta + 3\cos \theta = 0 \] This simplifies to: \[ -2\sin \theta + 4\cos \theta = 0 \] or: \[ 2\sin \theta = 4\cos \theta \] Dividing both sides by 2 gives: \[ \sin \theta = 2\cos \theta \] ### Step 4: Express in terms of tangent Dividing both sides by \(\cos \theta\) (assuming \(\cos \theta \neq 0\)): \[ \tan \theta = 2 \] ### Step 5: Use a right triangle to find sine and cosine In a right triangle where \(\tan \theta = 2\), we can denote the opposite side as 2 and the adjacent side as 1. Using the Pythagorean theorem, the hypotenuse \(h\) is: \[ h = \sqrt{2^2 + 1^2} = \sqrt{5} \] ### Step 6: Calculate sine and cosine Now we can find \(\sin \theta\) and \(\cos \theta\): \[ \sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{2}{\sqrt{5}}, \quad \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1}{\sqrt{5}} \] ### Step 7: Calculate \(\sin^4 \theta - \cos^4 \theta\) We know that: \[ \sin^4 \theta - \cos^4 \theta = (\sin^2 \theta + \cos^2 \theta)(\sin^2 \theta - \cos^2 \theta) \] Since \(\sin^2 \theta + \cos^2 \theta = 1\), we need to find \(\sin^2 \theta - \cos^2 \theta\): \[ \sin^2 \theta = \left(\frac{2}{\sqrt{5}}\right)^2 = \frac{4}{5}, \quad \cos^2 \theta = \left(\frac{1}{\sqrt{5}}\right)^2 = \frac{1}{5} \] Thus: \[ \sin^2 \theta - \cos^2 \theta = \frac{4}{5} - \frac{1}{5} = \frac{3}{5} \] ### Step 8: Final calculation Now substituting back: \[ \sin^4 \theta - \cos^4 \theta = 1 \cdot \frac{3}{5} = \frac{3}{5} \] ### Final Answer The value of \(\sin^4 \theta - \cos^4 \theta\) is: \[ \frac{3}{5} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If (sintheta+costheta)/(sintheta-costheta)=3 then the value of sin^(4)theta is :

(sin3theta-cos3theta)/(sintheta+costheta)+1 =

(sintheta+sin2theta)/(1+costheta+cos2theta) =

(sintheta+sin2theta)/(1+costheta+cos2theta)=?

If (sintheta+costheta)/(sintheta-costheta)=(5)/(4) , the value of (tan^(2)theta+1)/(tan^(2)theta-1) is

If sintheta+costheta=1 , then the value of sin2theta is

If sintheta+costheta=1/2 then find the value of 16(sin2theta+cos4theta+sin6theta)

If sintheta-costheta=1 , then the value of sin^3theta-cos^3theta is __________ .

If sintheta + cos theta =1 , then the value of sintheta - costheta is:

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. If sinalphasec(30^(@)+alpha)=1(0^(@)ltalphalt60^(@)), then find the va...

    Text Solution

    |

  2. Find the value of (sectheta-costheta)^(2)+(cosectheta-sintheta)^(2)-...

    Text Solution

    |

  3. If (sintheta+costheta)/(sintheta-costheta)=3, then find the value of s...

    Text Solution

    |

  4. If sin 17^@ = x/y,then the value of sec 17^@ - sin 73^@ is

    Text Solution

    |

  5. If cos43^(@)=(x)/(sqrt(x^(2)+y^(2))), then the value of tan47^(@) is.

    Text Solution

    |

  6. If tantheta=(x)/(y), then (xsintheta+ycostheta)/(xsintheta-ycostheta) ...

    Text Solution

    |

  7. Find the value of ((1)/(costheta)+(1)/(cottheta))((1)/(costheta)-(1)/(...

    Text Solution

    |

  8. If sin61^(@)=(a)/(sqrt(a^(2)+b^(2))), then find the value of tan61^(@)...

    Text Solution

    |

  9. If (cos^(2)theta)/(cot^(2)theta-cos^(2)theta)=3and0^(@)ltthetalt90^(@)...

    Text Solution

    |

  10. (2sin68^(@))/(cos22^(@))-(2cot15^(@))/(5tan75^(@))-(3tan45^(@).tan20^(...

    Text Solution

    |

  11. If cosec39^(@)=x, then the value of (1)/(cosec^(2)51^(@))+sin^(2)39^...

    Text Solution

    |

  12. Find the value of (1)/((1+tan^(2)theta))+(1)/((1+cot^(2)theta))

    Text Solution

    |

  13. The value of (cos^(3)20^(@)-cos^(3)70^(@))/(sin^(3)70^(@)-sin^(3)20^(@...

    Text Solution

    |

  14. The value of (cos^(n)38^(@)-cot^(n)52^(@))/(sin^(n)52^(@)-tan^(n)38^(@...

    Text Solution

    |

  15. The value of (cot^(n)29^(@)-cot^(n)61^(@))/(tan^(n)61^(@)-tan^(n)29^(@...

    Text Solution

    |

  16. If x=tan15^(@), then find the value of x^(2)+(1)/(x^(2)).

    Text Solution

    |

  17. If x=cot75^(@), then find the value of sqrt(x)+(1)/(sqrt(x)).

    Text Solution

    |

  18. If tan(A+B)=(1)/(2),tan(A-B)=(1)/(3), then find the value of tan2A.

    Text Solution

    |

  19. If tan(A+2B)=(1)/(2),tan2(A-B)=(1)/(3), then find the value of angleA.

    Text Solution

    |

  20. If cos(A-B)=(1)/(2)andsin(A+B)=(1)/(2), then find the minimum positive...

    Text Solution

    |