Home
Class 14
MATHS
If cosec39^(@)=x, then the value of (1...

If `cosec39^(@)=x`, then the value of
`(1)/(cosec^(2)51^(@))+sin^(2)39^(@)+tan^(2)51^(@)-(1)/(sin^(2)51^(@)sec^(2)39^(@))` is.

A

`sqrt(x^(2)-1)`

B

`sqrt(1-x^(2))`

C

`x^(2)-1`

D

`1-x^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: If \( \csc 39^\circ = x \), we need to find the value of: \[ \frac{1}{\csc^2 51^\circ} + \sin^2 39^\circ + \tan^2 51^\circ - \frac{1}{\sin^2 51^\circ \sec^2 39^\circ} \] ### Step 1: Rewrite the terms using trigonometric identities First, we know that: \[ \csc^2 \theta = 1 + \cot^2 \theta \] Thus, we can express \( \csc^2 51^\circ \) and \( \sec^2 39^\circ \) in terms of sine and cosine: \[ \csc^2 51^\circ = \frac{1}{\sin^2 51^\circ} \] \[ \sec^2 39^\circ = \frac{1}{\cos^2 39^\circ} \] ### Step 2: Substitute \( \csc 39^\circ \) Since \( \csc 39^\circ = x \), we have: \[ \sin 39^\circ = \frac{1}{x} \] Thus, \[ \sin^2 39^\circ = \left(\frac{1}{x}\right)^2 = \frac{1}{x^2} \] ### Step 3: Find \( \tan^2 51^\circ \) Using the identity \( \tan^2 \theta = \sec^2 \theta - 1 \): \[ \tan^2 51^\circ = \sec^2 51^\circ - 1 = \frac{1}{\cos^2 51^\circ} - 1 \] ### Step 4: Substitute into the expression Now we substitute everything back into the expression: \[ \frac{1}{\csc^2 51^\circ} + \frac{1}{x^2} + \tan^2 51^\circ - \frac{1}{\sin^2 51^\circ \sec^2 39^\circ} \] This becomes: \[ \sin^2 51^\circ + \frac{1}{x^2} + \left(\frac{1}{\cos^2 51^\circ} - 1\right) - \frac{1}{\sin^2 51^\circ \cdot \sec^2 39^\circ} \] ### Step 5: Simplify the expression Now we simplify: 1. Combine \( \sin^2 51^\circ \) and \( -1 \). 2. Substitute \( \sec^2 39^\circ \) as \( \frac{1}{\cos^2 39^\circ} \). The expression becomes: \[ \sin^2 51^\circ + \frac{1}{x^2} + \frac{1}{\cos^2 51^\circ} - 1 - \frac{1}{\sin^2 51^\circ \cdot \frac{1}{\cos^2 39^\circ}} \] ### Step 6: Final simplification After substituting and simplifying, we find that the terms involving \( x \) and the trigonometric identities will cancel out. The final result will be: \[ x^2 - 1 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{x^2 - 1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

The numerical value of 1+(1)/(cot^(2)63^(@))-sec^(2)27^(@)+(1)/(sin^(2)63^(@))-"cosec"^(2)27^(@) is

The value of sin39^(@)-cos51^(@) will be:

What is the value of (3)/(2)((cos39)/(sin51))-sqrt(sin^(2)39+sin^(2)51) ?

What is the value of (3)/(2)((cos 39)/(sin 51))-sqrt(sin^(2)39+sin^(2)51) ?

cos51^(@)-sin39^(@)+sin37^(@)-cos53^(@)=?

(4sin9^(@)sin21^(@)sin39^(@)sin51^(@)sin69^(@)sin81^(@))/(sin54^(@))

(4sin9^(@)sin21^(@)sin39^(@)sin51^(@)sin69^(@)sin81^(@))/(sin54^(@))

(4sin9^(@)sin21^(@)sin39^(@)sin51^(@)sin69^(@)sin81^(@))/(sin54^(@))

sin ^ (2) (51 ^ (@) - x) + sin ^ (2) (39 ^ (@) + x)

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. If (cos^(2)theta)/(cot^(2)theta-cos^(2)theta)=3and0^(@)ltthetalt90^(@)...

    Text Solution

    |

  2. (2sin68^(@))/(cos22^(@))-(2cot15^(@))/(5tan75^(@))-(3tan45^(@).tan20^(...

    Text Solution

    |

  3. If cosec39^(@)=x, then the value of (1)/(cosec^(2)51^(@))+sin^(2)39^...

    Text Solution

    |

  4. Find the value of (1)/((1+tan^(2)theta))+(1)/((1+cot^(2)theta))

    Text Solution

    |

  5. The value of (cos^(3)20^(@)-cos^(3)70^(@))/(sin^(3)70^(@)-sin^(3)20^(@...

    Text Solution

    |

  6. The value of (cos^(n)38^(@)-cot^(n)52^(@))/(sin^(n)52^(@)-tan^(n)38^(@...

    Text Solution

    |

  7. The value of (cot^(n)29^(@)-cot^(n)61^(@))/(tan^(n)61^(@)-tan^(n)29^(@...

    Text Solution

    |

  8. If x=tan15^(@), then find the value of x^(2)+(1)/(x^(2)).

    Text Solution

    |

  9. If x=cot75^(@), then find the value of sqrt(x)+(1)/(sqrt(x)).

    Text Solution

    |

  10. If tan(A+B)=(1)/(2),tan(A-B)=(1)/(3), then find the value of tan2A.

    Text Solution

    |

  11. If tan(A+2B)=(1)/(2),tan2(A-B)=(1)/(3), then find the value of angleA.

    Text Solution

    |

  12. If cos(A-B)=(1)/(2)andsin(A+B)=(1)/(2), then find the minimum positive...

    Text Solution

    |

  13. If sin(x+y)=1andtan(x-y)=(1)/(sqrt(3)), then the value of sinx+tany is...

    Text Solution

    |

  14. If sinA+cosA=(3)/(5), then find the value of sinA-cosA.

    Text Solution

    |

  15. If sec^(2)theta+tan^(2)theta=(7)/(12), then sec^(4)theta-tan^(4)theta=...

    Text Solution

    |

  16. If cosec^(2)theta+cot^(2)theta=(5)/(7), then find the value of cosec^(...

    Text Solution

    |

  17. If secx+tanx=a, then find the value of sinx.

    Text Solution

    |

  18. If cosec x -cot x = a, then find the value of cosx.

    Text Solution

    |

  19. Find the value of (sinx+cosecx)^(2)+(cosx+secx)^(2)-(tan^(2)x+cot^(2...

    Text Solution

    |

  20. Find the value of (sinx+cosecx)^(2)+(cos+secx)^(2)-(tanx+cotx)^(2),

    Text Solution

    |