Home
Class 14
MATHS
If secx+tanx=a, then find the value of s...

If `secx+tanx=a`, then find the value of `sinx`.

A

`(a^(2)-1)/(a^(2)+1)`

B

`(a^(2)+1)/(a^(2)-1)`

C

`(a-1)/(a^(2)+1)`

D

`(a^(2)-1)/(a+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin x \) given that \( \sec x + \tan x = a \), we can follow these steps: ### Step 1: Use the identity for \( \sec x + \tan x \) We know that: \[ \sec x + \tan x = a \] We can also use the identity: \[ \sec^2 x - \tan^2 x = 1 \] This can be factored as: \[ (\sec x + \tan x)(\sec x - \tan x) = 1 \] ### Step 2: Substitute \( \sec x + \tan x \) Substituting \( \sec x + \tan x = a \) into the identity gives us: \[ a(\sec x - \tan x) = 1 \] From this, we can solve for \( \sec x - \tan x \): \[ \sec x - \tan x = \frac{1}{a} \] ### Step 3: Set up equations for \( \sec x \) and \( \tan x \) Now we have two equations: 1. \( \sec x + \tan x = a \) 2. \( \sec x - \tan x = \frac{1}{a} \) Let’s denote \( \sec x = S \) and \( \tan x = T \). We can rewrite our equations as: 1. \( S + T = a \) 2. \( S - T = \frac{1}{a} \) ### Step 4: Solve for \( S \) and \( T \) Adding these two equations: \[ (S + T) + (S - T) = a + \frac{1}{a} \] This simplifies to: \[ 2S = a + \frac{1}{a} \] Thus, we find: \[ S = \frac{a + \frac{1}{a}}{2} \] Now, subtracting the second equation from the first: \[ (S + T) - (S - T) = a - \frac{1}{a} \] This simplifies to: \[ 2T = a - \frac{1}{a} \] Thus, we find: \[ T = \frac{a - \frac{1}{a}}{2} \] ### Step 5: Find \( \cos x \) and \( \sin x \) We know: \[ \sec x = \frac{1}{\cos x} \quad \Rightarrow \quad \cos x = \frac{1}{S} = \frac{2}{a + \frac{1}{a}} = \frac{2a}{a^2 + 1} \] To find \( \sin x \), we use the identity: \[ \sin^2 x + \cos^2 x = 1 \quad \Rightarrow \quad \sin^2 x = 1 - \cos^2 x \] Calculating \( \cos^2 x \): \[ \cos^2 x = \left(\frac{2a}{a^2 + 1}\right)^2 = \frac{4a^2}{(a^2 + 1)^2} \] Thus: \[ \sin^2 x = 1 - \frac{4a^2}{(a^2 + 1)^2} = \frac{(a^2 + 1)^2 - 4a^2}{(a^2 + 1)^2} \] Expanding the numerator: \[ (a^2 + 1)^2 - 4a^2 = a^4 + 2a^2 + 1 - 4a^2 = a^4 - 2a^2 + 1 = (a^2 - 1)^2 \] Thus: \[ \sin^2 x = \frac{(a^2 - 1)^2}{(a^2 + 1)^2} \] ### Step 6: Take the square root to find \( \sin x \) Taking the square root gives: \[ \sin x = \frac{a^2 - 1}{a^2 + 1} \] ### Final Answer Thus, the value of \( \sin x \) is: \[ \sin x = \frac{a^2 - 1}{a^2 + 1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If y=secx*tanx then dy/dx=

If lambda be the minimum value of y= (sinx+"cosec"x)^(2)+(cosx+secx)^(2)+(tanx+cot x)^(2) where x in R . Find lambda-6 .

Find the general solution of sinx=tanx

If secx=sqrt2 and (3pi)/(2)lt x lt 2pi find the value of (1-tanx-cosecx)/(1-cotx-cosecx)

If y=(secx-tanx)/(secx+tanx), then (dy)/(dx) equals.

If u=secx+tanx-1,v=secx-tanx+1," then "u'v+v'u=

Let y=(secx+tanx-1)/(tanx-secx+1) .If ((dy)/(dx))_(x=(pi)/4)=a+sqrt(b) , then value of a+b is equal to

If sinx+cosx+tanx+cotx+secx+cosecx = 7 and sin2x = a-bsqrt2 , then ordered pair (a,b) can be :

If Sinx=(4)/(5) , then Secx+Tanx=?

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. If sec^(2)theta+tan^(2)theta=(7)/(12), then sec^(4)theta-tan^(4)theta=...

    Text Solution

    |

  2. If cosec^(2)theta+cot^(2)theta=(5)/(7), then find the value of cosec^(...

    Text Solution

    |

  3. If secx+tanx=a, then find the value of sinx.

    Text Solution

    |

  4. If cosec x -cot x = a, then find the value of cosx.

    Text Solution

    |

  5. Find the value of (sinx+cosecx)^(2)+(cosx+secx)^(2)-(tan^(2)x+cot^(2...

    Text Solution

    |

  6. Find the value of (sinx+cosecx)^(2)+(cos+secx)^(2)-(tanx+cotx)^(2),

    Text Solution

    |

  7. Find the value of (sinx+cosecx)^(2)+(cosx-secx)^(2)-(tanx+cotx)^(2),

    Text Solution

    |

  8. Find the value of 2(sintheta^(6)+cos^(6)theta)-3(sin^(4)theta+cos^(4...

    Text Solution

    |

  9. Find the value of 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4...

    Text Solution

    |

  10. If u(n) = cos^(n) alpha + sin^(n) alpha , then the value of 2 u(6) - 3...

    Text Solution

    |

  11. If (sectheta+tantheta)/(sectheta-tantheta)=2(51)/(79), then sintheta w...

    Text Solution

    |

  12. If sintheta+sin^(2)theta=1, then find the value of cos^(2)theta+cos^(4...

    Text Solution

    |

  13. If costheta+cos^(2)theta=1, then find the value of sin^(4)theta+sin^(2...

    Text Solution

    |

  14. If cosA+cos^(2)A=1, then find the value of sin^(8)A+2sin^(6)A+sin^(4)A...

    Text Solution

    |

  15. If cosA+cos^(2)A=1, then find the value of sin^(12)A+3sin^(10)A+3sin^(...

    Text Solution

    |

  16. If sinA+sin^(2)A=1, then find the value of cos^(12)A+3cos^(10)A+3cos^(...

    Text Solution

    |

  17. If cos^(2)x+cos^(4)x=1, then find the value of tan^(2)x+tan^(4)x.

    Text Solution

    |

  18. If 3sinx+4cosx=2, then find the value of 3cosx-4sinx.

    Text Solution

    |

  19. If costheta-sintheta=sqrt(2)costheta, then find the value of costheta+...

    Text Solution

    |

  20. If sintheta+costheta=sqrt(2), then find the value of sintheta-costheta...

    Text Solution

    |