Home
Class 14
MATHS
Find the value of 2(sintheta^(6)+cos^(...

Find the value of
`2(sintheta^(6)+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)`

A

1

B

5

C

9

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 2(\sin^6 \theta + \cos^6 \theta) - 3(\sin^4 \theta + \cos^4 \theta) \), we can follow these steps: ### Step 1: Use the identity for sine and cosine We know that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] We will use this identity to express higher powers of sine and cosine. ### Step 2: Find \(\sin^6 \theta + \cos^6 \theta\) To find \(\sin^6 \theta + \cos^6 \theta\), we can use the identity: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Let \(a = \sin^2 \theta\) and \(b = \cos^2 \theta\). Then: \[ \sin^6 \theta + \cos^6 \theta = (\sin^2 \theta + \cos^2 \theta)(\sin^4 \theta - \sin^2 \theta \cos^2 \theta + \cos^4 \theta) \] Since \(\sin^2 \theta + \cos^2 \theta = 1\), we have: \[ \sin^6 \theta + \cos^6 \theta = \sin^4 \theta - \sin^2 \theta \cos^2 \theta + \cos^4 \theta \] ### Step 3: Find \(\sin^4 \theta + \cos^4 \theta\) We can find \(\sin^4 \theta + \cos^4 \theta\) using the identity: \[ \sin^4 \theta + \cos^4 \theta = (\sin^2 \theta + \cos^2 \theta)^2 - 2\sin^2 \theta \cos^2 \theta \] Thus, \[ \sin^4 \theta + \cos^4 \theta = 1 - 2\sin^2 \theta \cos^2 \theta \] ### Step 4: Substitute back into the original expression Now we can substitute these results back into the original expression: \[ 2(\sin^6 \theta + \cos^6 \theta) - 3(\sin^4 \theta + \cos^4 \theta) \] Substituting \(\sin^6 \theta + \cos^6 \theta\): \[ = 2(\sin^4 \theta - \sin^2 \theta \cos^2 \theta + \cos^4 \theta) - 3(1 - 2\sin^2 \theta \cos^2 \theta) \] This simplifies to: \[ = 2(\sin^4 \theta + \cos^4 \theta) - 2\sin^2 \theta \cos^2 \theta - 3 + 6\sin^2 \theta \cos^2 \theta \] Combining like terms gives: \[ = 2(\sin^4 \theta + \cos^4 \theta) + 4\sin^2 \theta \cos^2 \theta - 3 \] ### Step 5: Substitute \(\sin^4 \theta + \cos^4 \theta\) back in Now substitute \(\sin^4 \theta + \cos^4 \theta = 1 - 2\sin^2 \theta \cos^2 \theta\): \[ = 2(1 - 2\sin^2 \theta \cos^2 \theta) + 4\sin^2 \theta \cos^2 \theta - 3 \] This simplifies to: \[ = 2 - 4\sin^2 \theta \cos^2 \theta + 4\sin^2 \theta \cos^2 \theta - 3 \] Thus, we have: \[ = 2 - 3 = -1 \] ### Final Answer The value of the expression is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

Find the value of 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)-(sin^(2)theta+cos^(2)theta)^(2)

Find the value of 6(sin^(6)theta+cos^(6)theta)-9(sin^(4)theta+cos^(4)theta)+4

The value for 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1 is

The value of (2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta))/(cos^(4)theta-sin^(4)theta-2cos^(2)theta) is :

Prove : 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0 .

The value of 8(sin^(6)theta+cos^(6)theta)-12(sin^(4)theta+cos^(4)theta) is equal to

4(sin^(6)theta+cos^(6)theta)-6(sin^(4)theta+cos^(4)theta) is equal to

If sin theta+cos theta=(5)/(4) then find the value of sin^(6)theta+cos^(6)theta+7sin^(2)theta*cos^(2)theta

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. Find the value of (sinx+cosecx)^(2)+(cos+secx)^(2)-(tanx+cotx)^(2),

    Text Solution

    |

  2. Find the value of (sinx+cosecx)^(2)+(cosx-secx)^(2)-(tanx+cotx)^(2),

    Text Solution

    |

  3. Find the value of 2(sintheta^(6)+cos^(6)theta)-3(sin^(4)theta+cos^(4...

    Text Solution

    |

  4. Find the value of 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4...

    Text Solution

    |

  5. If u(n) = cos^(n) alpha + sin^(n) alpha , then the value of 2 u(6) - 3...

    Text Solution

    |

  6. If (sectheta+tantheta)/(sectheta-tantheta)=2(51)/(79), then sintheta w...

    Text Solution

    |

  7. If sintheta+sin^(2)theta=1, then find the value of cos^(2)theta+cos^(4...

    Text Solution

    |

  8. If costheta+cos^(2)theta=1, then find the value of sin^(4)theta+sin^(2...

    Text Solution

    |

  9. If cosA+cos^(2)A=1, then find the value of sin^(8)A+2sin^(6)A+sin^(4)A...

    Text Solution

    |

  10. If cosA+cos^(2)A=1, then find the value of sin^(12)A+3sin^(10)A+3sin^(...

    Text Solution

    |

  11. If sinA+sin^(2)A=1, then find the value of cos^(12)A+3cos^(10)A+3cos^(...

    Text Solution

    |

  12. If cos^(2)x+cos^(4)x=1, then find the value of tan^(2)x+tan^(4)x.

    Text Solution

    |

  13. If 3sinx+4cosx=2, then find the value of 3cosx-4sinx.

    Text Solution

    |

  14. If costheta-sintheta=sqrt(2)costheta, then find the value of costheta+...

    Text Solution

    |

  15. If sintheta+costheta=sqrt(2), then find the value of sintheta-costheta...

    Text Solution

    |

  16. If sintheta+costheta=pandsectheta+cosectheta=q, then q(p^(2)-1)=?

    Text Solution

    |

  17. If T(n)=sin^(n)theta+cos^(n)theta then (T(3)-T(5))/(T(1))=?

    Text Solution

    |

  18. If x=acos^(3)theta,y=bsin^(3)theta then ((x)/(a))^((2)/(3))+((y)/(b))^...

    Text Solution

    |

  19. If x=asec^(n)thetaandy=btan^(n)theta, then find the value of theta.

    Text Solution

    |

  20. If tan^(5)thetatan^(5)5theta=1, then find the value of tan^(4)3theta.

    Text Solution

    |