Home
Class 14
MATHS
If costheta+cos^(2)theta=1, then find th...

If `costheta+cos^(2)theta=1`, then find the value of `sin^(4)theta+sin^(2)theta`.

A

`-1`

B

5

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos \theta + \cos^2 \theta = 1 \) and find the value of \( \sin^4 \theta + \sin^2 \theta \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \cos \theta + \cos^2 \theta = 1 \] ### Step 2: Let \( x = \cos \theta \) Substituting \( x \) for \( \cos \theta \), we can rewrite the equation as: \[ x + x^2 = 1 \] ### Step 3: Rearrange the equation Rearranging gives us: \[ x^2 + x - 1 = 0 \] ### Step 4: Solve the quadratic equation We can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 1, b = 1, c = -1 \): \[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ x = \frac{-1 \pm \sqrt{1 + 4}}{2} \] \[ x = \frac{-1 \pm \sqrt{5}}{2} \] ### Step 5: Find \( \cos \theta \) Thus, we have two possible values for \( \cos \theta \): \[ \cos \theta = \frac{-1 + \sqrt{5}}{2} \quad \text{or} \quad \cos \theta = \frac{-1 - \sqrt{5}}{2} \] Since \( \cos \theta \) must be in the range \([-1, 1]\), we discard \( \frac{-1 - \sqrt{5}}{2} \) as it is less than -1. Therefore: \[ \cos \theta = \frac{-1 + \sqrt{5}}{2} \] ### Step 6: Find \( \sin^2 \theta \) Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ \sin^2 \theta = 1 - \cos^2 \theta \] Calculating \( \cos^2 \theta \): \[ \cos^2 \theta = \left(\frac{-1 + \sqrt{5}}{2}\right)^2 = \frac{(-1 + \sqrt{5})^2}{4} = \frac{1 - 2\sqrt{5} + 5}{4} = \frac{6 - 2\sqrt{5}}{4} = \frac{3 - \sqrt{5}}{2} \] Thus, \[ \sin^2 \theta = 1 - \frac{3 - \sqrt{5}}{2} = \frac{2 - (3 - \sqrt{5})}{2} = \frac{-1 + \sqrt{5}}{2} \] ### Step 7: Find \( \sin^4 \theta \) Now, we need to find \( \sin^4 \theta \): \[ \sin^4 \theta = (\sin^2 \theta)^2 = \left(\frac{-1 + \sqrt{5}}{2}\right)^2 = \frac{(-1 + \sqrt{5})^2}{4} = \frac{6 - 2\sqrt{5}}{4} = \frac{3 - \sqrt{5}}{2} \] ### Step 8: Calculate \( \sin^4 \theta + \sin^2 \theta \) Now we can find: \[ \sin^4 \theta + \sin^2 \theta = \frac{3 - \sqrt{5}}{2} + \frac{-1 + \sqrt{5}}{2} \] Combining the fractions: \[ = \frac{(3 - \sqrt{5}) + (-1 + \sqrt{5})}{2} = \frac{2}{2} = 1 \] ### Final Answer Thus, the value of \( \sin^4 \theta + \sin^2 \theta \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

Find the value of 1-2sin^(2)theta+sin^(4)theta .

If sec theta=cos^(2)theta then find the value of sin^(4)theta+2sin^(3)theta+sin^(2)theta

If sin^(2)theta-cos^(2)theta=(1)/(4) , then the value of (sin^(4)theta-cos^(4)theta) is :

If (sintheta+costheta)/(sintheta-costheta)=3 , then find the value of sin^(4)theta-cos^(4)theta .

If sin^(4)theta-cos^(4)theta=k^(4) , then the value of sin^(2)theta-cos^(2)theta is

If (sin theta+cos theta)/(sin theta-cos theta)=3, then find the value of sin^(4)theta-cos^(4)theta

If theta is an acute angle and sintheta=costheta , then find the value of 2tan^(2)theta+sin^(2)theta-1 .

If sintheta+costheta=1/2 then find the value of 16(sin2theta+cos4theta+sin6theta)

If 3cos theta=1, find the value of (6sin^(2)theta+tan^(2)theta)/(4cos theta)

If (sin theta + cos theta)/(sin theta - cos theta)=3 , then the value of sin^(4)theta - cos^(4)theta is:

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. If (sectheta+tantheta)/(sectheta-tantheta)=2(51)/(79), then sintheta w...

    Text Solution

    |

  2. If sintheta+sin^(2)theta=1, then find the value of cos^(2)theta+cos^(4...

    Text Solution

    |

  3. If costheta+cos^(2)theta=1, then find the value of sin^(4)theta+sin^(2...

    Text Solution

    |

  4. If cosA+cos^(2)A=1, then find the value of sin^(8)A+2sin^(6)A+sin^(4)A...

    Text Solution

    |

  5. If cosA+cos^(2)A=1, then find the value of sin^(12)A+3sin^(10)A+3sin^(...

    Text Solution

    |

  6. If sinA+sin^(2)A=1, then find the value of cos^(12)A+3cos^(10)A+3cos^(...

    Text Solution

    |

  7. If cos^(2)x+cos^(4)x=1, then find the value of tan^(2)x+tan^(4)x.

    Text Solution

    |

  8. If 3sinx+4cosx=2, then find the value of 3cosx-4sinx.

    Text Solution

    |

  9. If costheta-sintheta=sqrt(2)costheta, then find the value of costheta+...

    Text Solution

    |

  10. If sintheta+costheta=sqrt(2), then find the value of sintheta-costheta...

    Text Solution

    |

  11. If sintheta+costheta=pandsectheta+cosectheta=q, then q(p^(2)-1)=?

    Text Solution

    |

  12. If T(n)=sin^(n)theta+cos^(n)theta then (T(3)-T(5))/(T(1))=?

    Text Solution

    |

  13. If x=acos^(3)theta,y=bsin^(3)theta then ((x)/(a))^((2)/(3))+((y)/(b))^...

    Text Solution

    |

  14. If x=asec^(n)thetaandy=btan^(n)theta, then find the value of theta.

    Text Solution

    |

  15. If tan^(5)thetatan^(5)5theta=1, then find the value of tan^(4)3theta.

    Text Solution

    |

  16. If tantheta.tan2theta=1, then find the value of sin^(2)2theta+tan^(2)2...

    Text Solution

    |

  17. If costhetacosec23^(@)=1, the value of theta is

    Text Solution

    |

  18. If sin(x+y)=cos(x-y), then find the value of cos^(2)x.

    Text Solution

    |

  19. If x,y are positive acute angles, x+ylt90^(@) and sin(2x-20^(@))=cos(2...

    Text Solution

    |

  20. If A and B are complementary angles, find the value of sqrt((tanAtanB+...

    Text Solution

    |